

پيوهانل محمل جـمعه حنيف
1491

$$
\begin{aligned}
& \text { مايكروبيولوزى } \\
& \text { پوهاند محمد جمعه حنيف } \\
& \text { نام كتاب } \\
& \text { مؤلف } \\
& \text { پوهنحَى طب هرات } \\
& \text { www.hu.edu.af } \\
& \text { مطبعه سهر، كابل، افغانستان } \\
& \text { ويب سايت } \\
& \text { وناش } \\
& \text { 1... } \\
& 1491 \\
& \text { تيراز } \\
& \text { سال } \\
& \text { www.ecampus-afghanistan.org } \\
& \text { داونلود } \\
& \text { كتاب هذا توسط انجمن همكاريهاى اكادميك آلمان (DAAD) از بوديجه وزارت خارجه فدرالى آلمان تمويل شده است. } \\
& \text { امور ادارى و تخنيكى كتاب توسط موسسه افنانيك انجام يانتها يانه استا } \\
& \text { مسؤليت محتوا و نوشتن كتاب مربوط نويسنده و يوهنحُى مربوطه مى باشد. اركان هالى كمك كنتــده و تطبيق } \\
& \text { كنتده هسؤل نمى باشند. }
\end{aligned}
$$

اگر ميخواهيد كه كتابِهاى تدريسى طبى شما چاپ گردد، با ما به تماس شويد: داكتر يــحـيـى وردكى ، وزارت تحصيلات عالى، كابل
 ايميل: wardak@afghanic.org

تمام حقوق نشر و چاپ همرای نویسنده محفوظ است.

پيام وزارت تحصيلات عالى

در جريان تاريخبشريت كتاب براى كسب علم و دانش نتش عمدهر را بازى كردهو

 ضروريات جوا امع كتبو مواد درسى جديد برای محصلين آمادهو چا پگرّردد.

 تا بعد از چاپ

وزارت تحصيلات عالى وظيفه خود ميداند تا تا جهت ارتقاى سطح دانش محصلين عزيز كتبو مواد درسى جديد و معيازى را آمادهنمايد.

 صميمانه تشكر مينمايم
|ميدوارم كه اين كار سودمند ادامهيافتهو بهساير بخش ها نيز گسترش يابد.

$$
\begin{aligned}
& \text { با احترام } \\
& \text { پوهاند دوكتور عبيداللّعبيد } \\
& \text { وزير تحصيلات عالى } \\
& \text { كابل، |"9| }
\end{aligned}
$$

هاپ كتب در سى يوهنحُى هاى طب

| استادان گرامىو محصلين عزيز !
كمبود ونبود كتب درسى در پوهنتون هاى افغانستان از مشكلات عـنا عمده بهشمار

 دربازار بهكيفيت پايين فوتوكاپیى ميخردد.

بد تمام چوهنتُى هاى طب |فغانستان ارسال نموده ايم.

كشور بيانمى دارد: :

استادان و محصلين پوهنحى هاى طب با مشكلات زياد مو اجه اند. تدريس به ميتود كهنه ،عدم دسترسى به معلومات و و مواد جديد ديد درسى و و استفاده از از كتبو

 طبجلب گردد.

 پوهنخى هاى طبكشور توزيع گرديدها اند.

 ديگر ما بطور خلاصه قرار ذيل اند : ا احابٍ كتب در سیى طبى

「. تدريس با ميتود جديد و وسايل يشر فته

「ّارزيابى ضووريات
 گردد و به اساس آن به شكل منظم پروزة هاى ادارى، اكادميكـ و انكشافى بـا به راه انداختهشوند.

FF. كتابخانه هاى مسلكى

بايد در تمـا مضا مين مهم و مسلكى كتب به معيارهاى بين المللى به زبان انگُليسى خريد ارى و بهد سترس كتابخانه هاى پوهنحى هاى طب قرار داده شود.

ه. لابراتوارها
در پوهنخّى هاى طب كشور بايد در بخش هاى مختلف لابر اتو ارهاى فعال وجود داشتهباشد.
9. شفاخانه هاى كدرى

هر پوهنحى طب كشور بايد داراى شفاخانه كدرى باشد و يا در يکـ شفاخانه شر ايط براى تريننگگ عملى محصصلين طب آماده گردد.
V. V هلان ستراتيرَيك

مربو ظه خود داراى يحـ پلان ستر اتيزيکـ پوهنحّى باشد.
از تمام استادان محترم خواهشمنديم كه در بخشى هاى مسلكى خويش كتب جديد
 بعدا در اختيار ما قرار دهند، تا به كيفيت عالى چاتٍ و و به شكل مجانى به دسترس پوهنحُى هاى مربوظه، استادان و محصلين قرار داده شود.

همچֶنان در مورد نكات ذكر شده يِيشنهادات و نظريات خود را به آدرس ما شريك
ساخته قا بتوانيم مشتر كاً در اين راستا قدم هاى مؤثرتر را بر داريم.
ازمحصلين عزيز نيز خواهشمنديم كه در امور ذكر شده با ما و استادان محترم
همكارى نمايند.
از وزارت محترم خارجه آلمان ومؤسسه DAAD (همكارى هاى اكادميك آلما آلمان)
 عهده گرفته كه از آن جمله پروسه چاپ په عنوان آن جريان دارد. از پوهنحَى طب
 زلمى توريال ، Dieter Hampel و موسسهافغنانيكـنيز تشكر ميكنيم كهدر امور اد ارى و تخنيكى چاپ گتب با ما همكارى نمودند.

 |نكشاف كه براى من امكانات كارى را طى دو سال كـذشته در افغانستان انـن مهيا ساخته، استاظهار سپاسو امت امتنان مينمايمر

از دانشمند محترم پوهاند دوكتور عبيداللّعبيد وزير تحصيلات عالىى، محترم

 چاپ چنمودن كتب همكارى نمودند.

$$
\begin{aligned}
& \text { ايميلآدرس: wardak@afghanic.org } \\
& \text { textbooks@afghanic.org }
\end{aligned}
$$

تقديم به

همه اساتيدى كه براى پيشرفت و انتقال علم و دانش از جان مايه گذاشتند!

: بِيشَ

خداوند منان را سپاس كذارم با لطف و مهربانى كه در حقم روا داشت تا در جهت رشد و ارتقاى دانش و
فرهنگى سرزمين بلا كشيده خويش اففانستان كامهاى بردارم .
 كار طاقت فرسا است بناً حركت در اين سمت من را وا داشت تا دلسوزانه و ييگرانه با تلاشهالى دوامدار در امر كمبوديها و نياز هاى موجود جامعل فرهنگى خويش از آثار يربار و منابع سرشار استفاده ببرم و در خدمت تشنه كان - علم و معرفت بشتابم

كتاب حاضر كه محصلان رشته بيولورى در فراكيرى اين مضمون اصول ، قوانين و اساسات آن يارى
رسانده و بدون ترديد سطح دانش و آكَاهى شانرا ار تقا خواهد داد. .

دييارتمنت در يكى از سمستر ها تدريس اين مضمون را به عهله من كذاشت وقتيكه به مفردات مراجعه كردم هر كز و هر كز نتوانسته به همان متطع به نيازمنديهاى موجود پاسخ ارايه كنمّ . ناكزير سرى در كا كتابخانه ها ها زدم از اين كتابخانه و آن كتابخانه مواد را جمع ، تدوين و به خدمت محصلان عزيز قرار دادم كه هر كا تكا تكافوى زمان را نمى نمود ـ بناً تصميم گرفتم تا بايد طبق مفردات دست داشته كتاب را تاليف ، تدوين و آماده نمايه . موضوع را به دييارتمنت ييشنهاد و دييارتمنت به اساس ضرورت شديد كه محسوس بود كار تاليف اين كتاب را بر عهره من سيرد .
بناً از آوان كار مشكلات سر راهم بود نخست كمبود مواد درسى و مصروفيت بيش از حد تدريس و دهمبا مشكل ديگر زندگى كه همه را پشت پاى زده كارم را بیى دريغانه با جد و جهد وافر شروع كردم .
 ساخت و همحِّنان همكارى و هميارى جمعى از دوستان كرانمايه ميتوانست معاونتى براى كارم باشد . امييوارم كتاب حاضر بتواند ، مشكلات و نارسائى هاى موجود را رفع و محصلان عزيز رشته بيولوثى در
فراگيى اصول ، قوانين و اساسات آن يارى رساند .

ميدانم كه با مطالعه ييگير اين مضمون سطح دانش محصلان ارتقا خواهد يافت ، مدرسين رشته بيولوزى
متوانند جهت آمادگى و تدريس ميكروبيولوثى استفاده شايانى نمايند. .

چحون مضمون ميكروبيولوزى در سمستر هاى ششمه و هeتم رشته بيولوثى قابل تدريس است و در هفته دو ساعت درسى را احتوا مينمايد ، لازم است تا بحث و فحص وسيع و همه جانبه هيرامون موضوع داشته باشيهم . |هداف اين مضمون شناختاندن ميكرواركانيزم ها ، اهميت آن بالاى زندگى انسان و ساير هوجودات حيه ، وقايع محيط ، حفظ الصحه مواد غذائى ، شناخت نوعيت ميكروبها ، شناخت ميكروبهاى آب و غذ و اهميت شان در سايكل زندگى حيوانات و نباتات بخشى از اهداف اين مضمون را تشكيل ميدهد ، بناً در مورد هر كدام معلومات مفصل ارزنده توام با تصاوير و جداول توضيح گرديده ، كه با تدريس اين مضمون رسيدن به اهداف متذكره را ميسر خواهند نمود .

و همحچنان مطالبى كه در اين كتاب جمع بندى گرديده مانند تاريخحچه علم ميكروبيولوزى ، انواع ميكروسكوب ها ، تخخيك استعمال ميكروسكوپ ، شناخت باكتريا ، طرز تلوين و كشت باكتريا ، تنذيه ، تكثر و تنفس در باكتريا ، معرفى امراض باكتريايى ، طبقه بندى باكتريا ، شناخت ويروسها ، طبقه بندى ويروسهـا ، امراض ويروسى ، فنجى ها ، طبقه بندى فنجى ها ، يروتوزوا ها ، امراض پروتوزوائى ، ميكروبيولوزى آب ، خاك ، و مواد غذائى و مطالب ديحر كه مربوط به اين مضمون ميباشد . تهيه و فهر ست وار به خدمت عالاقمندان و دوستداران علم بيولوزى قرار گرفته است ، كه اساتيد محترم و محصلان عزيز ميتوانند استفاده اعظمى از اين كتاب بنمايند .

در اخير از رهنمائى هاى عالمانه و زحمات بى دريغانه جناب دانشمند يوهاند دوكتور عبيداله 》 پريار « استاد فاكولته علوم طبيعى يوهنتون تعليم و تربيه و جناب دانشمد محترم يوهنوال محمد نبى و جناب دانشمند فرهيخته محترم ووهنوال محمد حليه استادان دييارتمنت بيولوثى يوهنتون تعليه و تربيه ابراز تشكر ، قدردانى و سياس نموده ، براى چخين دانشمندان عزيز طول عمر و سعادت دارين را استدعا مينمايمه . بنده به اين باورم كه اين تلاشها و فعاليتها زمانى مفيد و موثر خواهد بود كه فرهيخته كان دانش و فرهنگً با ارايه ييشنهادات و انتقادات سازندهٔ شان زمينه بهبود كمى و كيفى را فراهم ساخته تا در آينده توانسته باشمه كتابجاى از اين نوع ييشكش حضور مبار ك هموطنان نمايهم .

كه دراز است رةٌ منزل و عن نوسفرم
با احترام

يـوهنحى تعليم و تربييه يوهنتون هرات

تفريظدر مورد اثر تأليفى تحت عنوان ميكرو بيولوزى

الثر تاليفى كه تحت عنوان ميكروبيو لوزى در شُش فصل با داششتن عناوين بزرگی ،كوجك و
 ميباشّ كه در غنا منذى ديبارتمتت بيو لوزى و بهويو كيفيتٌ عالى تدريس و دانش علمى محصلان بيو لوزى كمك شايان مينمايد.
برداشت كلى الينست كه اثر مذكرر مطابق بيرو گرام و مفردات تُتليمى و نورم كتّاب

 استّاد محترم محمد جمعل حنيف را از رتّبه علمى بو هندوى به رتبه علمى يو هنوال تأيبيد و نيز

تقريظ

 نُطبيق نمودم هطابقت دارد.

اين كثّاب (ميكرولوزى) در شش فصل و .17 صفحه تحريرشده است . مولف بعد از

 بخاطر مشاهده آنها بايد از وسيله هيكروسكوب استفاد شود كه در اين اثرنيز در مورد شُناذت و استعمالل ميكروسكوب مطالب دلجّست تحربر بافتّه است . فصل دوم اين كتاب در مورد شـناخت

 هاى يك حجروى ميباشد.
 كه بصورت مجمو عى مطالب اين شش فصل در برگيرنده مضمون ميكرولوزّى در سمستر هاى ششم و هونّم محصلان رشتَه بيولوزَى بو هنخى تعليم و تر بيبه ميباشد. بايد ياد آور گردم كه در اين اثر مقررات نشراتى نبز در نظر گرفته شده و درمتّن وماخذ مربوط
 الصطلاحات علمى كه ايجاب توضيحات بيشتُر منمايد از صفات برجستّه اين اثر ميباشُدو از نظر هن اين اثر قابل نشر است . باور دارم كه محترّ بهو هندوى محمد جمعه حنيف در نوشتن اين اثر زياد زحمت و كوشش

 مزيد آرزو مينمايم

تقريظ

اثر تاليفي كه توسط استّاد محترم بوهندوي محمد جمعه "حنيف" استاد بوهدي تعليم و تربيه پوهنتون هرات تحت عنوان ميكرو بيولوري نگاشتَه شده است هطالعه نمودم.

محتويات كتاب تاليفي طبق مفردات بروگرام و ساعات درسي ديبارتمنت بيولوري آن پوهنحي آماده كرديده است. كتّاب متذكره حاوي بيشعفتار، مقدمه،فهرست مطالب و فصول عناوين ميباشث.
موضوعات مربوط به انواع مختلف مايكرواركانيزم را از نظر صفات اختصاصي، مورفولوزَيكي، ساختمان داخلي و وظايف آن در الثر تاليفي وضاحت يافتّه است. مطلعه و تدريس آن در انكثا فـ

دانشل بيولوري براي محصلان رشتّه اختصاصي داراي اهميت است. مولف در تهيه اثر تاليفي ڤواعد زبان و معيارهاي كتاب نويسي را رعايت نموده، در تكميل محتويات كتّاب متذكره از ماخد علمي داخلي و خارجي جديد استفاده بعمل آورده است. بناءٌ اينجاتب در چاپ و نشر اين اتر علمي تاليفي موافق ميباشم و براي تر ترفيع علمي موصوف از رتبه علمي پپوهندوي به رتبه علمي پوهنوال كافي ميانم در آينده موفقيت بيشتّ برايشان

مايكروبيولوزى عبارت از علمى است كه از موجودات حيه بسيار كوچى كه به چشم قابل رويت نميياشد بحث مينمايد ـ لغتاً Mikros به معنى كوچك Bios به مفعوم حيات و Loges به معنى علهم است. اين موجودات را بنام مايكرواركانيزم و يا ميكروب مسمى نموده اند و به اجسام حيه خيلى ابتدايى تعلق ميگيرند . اين مايكروارگانيزم اهميت فوق العاده دارند زيرا آن ها باعث عوامل تبدلات مختلف النوع مواد معلنى و عضوى و امراض حيوانى و نباتى مگيردند .

عده از مايكروار كانيزم به كمى مايكروسكوپ نورى ديده شده و عدهٔ توسط مايكروسكوپ الكترونى قابل ديد است . جاى تعجب نيست كه بسيارى از مايكرواركانيزم در چند دهه اخير بصورت مفصل مطالعه شده اند يا اينكه موجوديت آن ها براى علماى قرن گذشته معلوم بوده و تجربه نشان داده كه عوامل بعضى از امراض در تحت مايكروسكوپ غير قابل ديد بوده و از طريق فلتر بكتريائى عبور نموده ميتوانند حالت مشابهى با پرازيت هاى مايكروار گانيزم ها يعنى فازه ها (Phages) ميتوان مشاهده نمود . قدرت اعظمى بزرگ سازى مايكروسكوپ نورى به +..+r مرتبه بالغ ميگردد امكان وجود دارد كه تحت اين نوع مايكروسكوپ ها ذرات به جسامت -0,2
0,1 ميكرومتر' تفريق گردد .
(مايكروسكوپ هاى الكترونى معاصر داراى قدرت بزرگ نمائى يیى شى تا به اندازه 0,15 نومتر (ميباشد ـ امكانات بينائى نه تنها خوردترين اجسام حيه بلكه ساختمان هاى نمايت خورد حجرات را ميسر ميسازد به كمك خنين مايكروسكوپ ها شى مورد مطالعه تا به . Va مرتبه بزرگ نشان داده شده
 . مواد جمع آورى شده تا امروز نشان ميدهد كه عالم موجودات حيه ذره بينى در طبيعت ساحئ انتشار وسيع و متنوع را دارند ـ اتحاد ميكروب ها در يک گروب به كلى شرطى است زيرا اندازءُ اركانيزم با موقف سيستماتيكى آن اصلاً
 مايكروسكوبى اغلباً داراى شكل ملور ، استوانه ای و منحنى شامل ميباشند . اين موجودات عمدتاً فاقد كلروفيل بوده و بوسيله انقسام ساده تكثر مينمايند . حجره باكتريائى از نعاه ساختمان مشابه سلول اركانيزم هاى نباتى

ميباشد .

[^0]زيادى تعداد و نتش عمده باكتريا در طبيعت و زندگى انسان ضرور ت موجوديت علم مخصوص يعنى مايكروبيولوزى را كه اين موجودات ذره بينى را مطالعه ميكند كاملاً ثابت مينمايد ـ با اين هم باكتريالوزى جز
تركيبى ميكروبيولوثى ميباشد .

قارج ها در مركز توجه مايكروبيولوزى هم قرار داشته اين موجودات يی حجروى و چچند حجروى بدنه منشعب (Micellium) را به بار آورده و داراى اعضاى مغلق تكثرى ميباشند . اين ها به عالم نباتات متعلق بوده اما فاقد كلروفيل هستند . اكتينومسيت ها حالت وسطى بين باكتريا و قارج ها را اشغال مينمايند . مخمر هاى گروپپ بزر گ مايكرواركانيزم هاى تشكيل داده و يا اينكه اركانيزم هاى وحيد الحجروى ميباشند . از نكاه ساختمان و دوران انكشافى بايد به قارج هاى كيسه دار تعلق كرفته باشند و قارج هاى مايكروسكويى يكى از موضوعات مورد مطالعه علم مايكروبيولوزى بوده ويروس ها موجودات ماوراى مايكروسكوبى و عبارت از گروب بسيار بزرگى مايكروار كانيزم ها است كه از نحاه ساختمان به كلى متغاوت بوده و طبيعت زنده آن مدت ها مشكوكى بوده ويروس ها عامل امراض مختلف النوع نباتى و حيوانى ميباشند و ساختمان مخصوص وايروس ها و اهمييت زياد آنان موجب به ميان آمدن علم بخصوص بنام ويروسولوزى گرديد و اين همر يك امر طبيعى است . وايروس ها شامل مطالعه مايكروبيولوثى گردد.

مايكروبيولوزى طفيلى هاى ماورای مايكروسكوبى باكتريا ، اكتينوماسيت ها(Actinomyces) و ساير ميكرواركانيزم يینى Phage فاز ها مطالهd مينمايند . فارً ها از نحَاه ساختمان كدام شباهتى با ديگر مايكرواركانيزم ها ندارند ـ اينها نه به عالم نباتات و نه به عالم حيوانات تعلق ميگيرند ـ معمولاً آنها را هون وايرايرس ها مايكروار كانيزم مى یندارند .
بسيارى از حيوانات ساده (پروتوزوا) نباتات عمدتاً الجى ها تا تا اندازه جسامت مايكروسكوبى دارند معمولاً از گروب Protozoa يروتوزوا و الجى ها تحت عناوين علوم يروتوزولوزى Protozology و الگَولورى به تفصيل مطالعه ميشوند و اكثر خصوصيات مخصوص آنها نيز در كورس مايكروبيولوثى مطالعه Algology ميگردد .

با اينكه بشريت از موجوديت مايكروار كانيزم ها تصورى هم نداشت اما به صورت غير مستقيم از
زمانه هاى قديم به آنها در تماس بودند .

فصل اول

تاريخهج علم مايكرويبيولؤى

تاريخ بوجود آمدن اجسام حيه تقريباً شش ميليون سال قبل تعين شده و فوسيل هاى الجى هاى سبز آبى تقريباً يى ميليون سال قبل تخمين شده است اما تاريخ حيات مايكروبيولوزى چند صد سال تخمين گرديد از اينرو مايكروبيولوجى يك علم جديد بوده كه به جريان سير تكاملى آنرا بصورت مختصرى مييردازيم. . در زمان هاى قديه انسان ها به عمليه تخمر تهيه مشروبات الكولى توليد محصولات ترش شير ، پنير آشنائى داشته و اين پروسه تخمرى مردم را به حيرت در آورده بود بعد ها آن را به قوه خارق العاده نسبت ميدادند . بدين ترتيب الههه بركت و شراب بنام (باخوس) در نزد روميان پديد آمد. از قديه الايام مردم به امراض مختلفه منجمله با بيمارى
 داده شده و جنبه هاى وقايوى يعنى سوختاندن و شستشو را جواز ميدهد .

با اين همم تا اوسط قرن 19 هيچچس تصور كرده نميتوانست كه پروسه هاى مختلف النوع تخمرى و امراض در
Miosma نيتجه فعاليت موجودات بسيار كوچک به بار ميآيد . تا قرن اه چنين فكر ميشد كه اسباب موجب امراض (بخار بد بوى) يعنى بخار هاى بخصوص بيمار زاى موجوده در هواست . اين نظريه طبيب بزرگ يونان باستان هييوكرات كه در قرن چهارم قبل از ميلاد ميزيست ابراز نمود بعد ها طبيب مشهور ايتالوى فراكاسترو (-1483 1553) آموزش كانتاجيا Contagia بسط و توسعه داده و نوشت كه كانتاجيا عبارت از بيمارى است كه از يك شخص به شخص ديگر سرايت مينمايد . فراكاسترو به حدس پر نبوغ خود موجوديت ميكروب هاى كه مدت ها براى انسان نامعلوم بود پيش بينى كرد .
در قرن V V گاليله براى اولين بار مياكروسكوپ را با قدرت بزرگ نمائى نه چندان زياد طرح ريزى نمود . اين آله تيث عدسيه عينى به تدريج توسط خودگاليله و ساير محقيقين تكميل و اصلاح شد و به حالت عدسيه نسبتاً قصرالمحراق در آمد در سال هاى چهلم قرن VV پروفيسور رومى بنام كرخير در اثناى تحقيق اشياى مختلف به كمى

سيستم ذره بين كرم هاى بسيار خورد را مشاهده نمود و اين ها عبارت از ميكروب بودند اين تجارب جنبه تصادفى داشت .

مايكروبيولوزى تشريحى خوانند . ليون هوكى با مشغوليتى كه داشت در اوقات فراغت خود مصروف صيقل دادن شيشه ها بود موفق به ساخت آله گرديد كه امكان بزرگ نشان دادن تصوير اجسام ذره بينى را مسير ساخت و ميزان بزر گی نمائى نسخه ليون هوك به •عا مرتبه بالغ كرديد .
ليون هوك به كمى آلات بصرى خود يى سلسله كشفيات جالب را انجام داد كه بر اساس آن به وى منحيث
مشاهده كننده دقق و طبيعت شناسى خارق العاده ارزش عالى قابل گرديدند .
از جمله اشخاصى كه به كار هاى ليون هوك علاقمند كرديد يكى هم امپراطور روسيه بود كه وى در ايام سفر
خود به هالند به ليون هوك ملاقات نمود و به مايكروسكوپ اصلاح شده شان آشنائى حاصل كرده و ليون هوك يى
 روسى ساخته شد مخصوصاً در قرن \^ بيليانوف با فرزندانش به استادى در توليد مايكروسكوپ مشهور شدند ـ در قرن ^ا كوليبن تخنيكى دان معروف خود آموزى توليد مايكروسكوپ را رهبرى ميكرد . بدين سال توجه همه جانبه به عالمه ميكرواركانيزم معطوف گرديد و تشريح نمايندكان متنوعه دنياى حيرت انگَيز
 عالم, ششهور سويدنى لينه((V.V-IVVA) بنيان گذار نام گذارى دوگانه (جنس و نوع) تمام موجودات حيه ذره
بينى را در يی جنس مدغم نموده و بالای آن رسم Chaos infusori كذاشت هدف از اصطالح Infusorion مايكرواركانيزم هاى مختلفه بود كه در عصاره Infusium تكثر مينمايد ـ معمولاً به اين حيوانات ذره بينى ارتباط داده ميشود كه بنام Pouring or repening مسمى گرديده بود . بنابر عدم شناسائى اين گروپ موجودات حيه لينه متذكر شد كه به آن ها به مشابه ماليكول هاى زنده اسرار آمير
و عوامل فرضى بعضى از امراض مى نگَرد .

يك سلسله اطلاعات با ارزش محقق و طبيب مشهور روسى ساموبلويج (1810-1724) بدست آورد عالم موصوف در اثناى مطالعه علل اييديمى طاعون به كشف طبيعت اين مرض توجه زياد نمود و به نتيجه گيرى بكرو تازه در زمان خود نايل گرديد و ذكر نمود كه عامل مرض طاعون موجودات بخصوص و فوق العاده ميباشد وى ترزيقات وقايوى را بر عليه بيمارى طاعون ممكن دانست .

عالم بزرگى فرانسوى پاستور (1895-1822) مايكروبيولوجى را براه وسيع جديد آورد عالم مذكور براى اولين مرتبه نتش برازنده مايكرواركانيزم ها به مشابه عوامل تبدلات متتوع كيمياوى و امراض موجودات حيه نشان داد و
 نظر به طرز تفكر آن زمان عمله تخمر تجزيه پروتين بصورت خود بخودى به بار ميآمد . ياستور در تحقيقات خويش واضح ساخت كه هر شكل از پروسه تخمر عامل بخصوص داثته ميياشد وى بها اثبات رسانيد كه قند در تح تحت تاثير ميكروب ها مخصوص به لكتيك اسيد مبدل گرديده ، تخمر الكول بوسيله مايكرواركانيزم ديگرى يينى مخمر ها صورت ميگيرد
تحقيقات پاستور صرف اهميت برازنده علمى نداشته بلكه در باره مسايل خالص عملى توليدات ـ تخمرى مانند ،
شراب سازى ، بير سازى و استحصال سركه داراى اهميت بوده و در اين باره سه مونوگراف را را به نشر رسانيد . در اين آثار معلومات ارزشمند راجع به بهتر ساختن تكنولوثى اين پروسه و مجادله با نواقص توليدى ابراز گَرديده و پاستور به اثبات رساند كه نواقص شراب و بير توسط مايكروار كانيزم ها با به بار ميآور د . به تحقيق پروسه تخمرى پاسستور نتوانست كه هروسه نهايت معمولى و مـهم مانند كَنديدن مواد بروتينى كه توام
با شكل مواد متعفن ميباشد تماس نكيرد .

يس از تجارب پاستور كه نقش مايكرواركانيزم ها را را در پروسه هاى مختلفه نشان حل مسئله امكان يِيدايش خود بخودى ميكروب ها اهميت عملى مهمر را كسب كرد ـ اكادمى علوم فرانسه جايزه را را به خاطر حل مل مسئله يبيدايش خود بخودى اعلان نمود و كميسون با صلاحيت اين جايزه را با په ياستور اعطا نمود .
 تمام كرم هاى ييله در اثر مريضى بنام Pebrine ياد ميگرَدد به هلاكت رسيدند و صنعت ييله ورى در جنوب فرانسه رو به سقوط بود ـ مجلس شورا از ياستور خواهش نمود تا علت اين مرض را تحقيق نمايد و ياستور به اثر تحقيقات پينج
ساله خويش خصوصيت مرض را دريافت نمود وتدابير وقايوى آنرا تجويز نمود .

همه چنان پياستور به مرض ديگر كرم ييله كه بنام Fliasher ياد ميشود تدابير مجادلوى آن را تجويز كرد . عامل اين مرض ستريتو كوك شناخت به همين ترتيب در بارة مرض سياه زهمه (Anthrax) علاقه كَرفت ـ در در باره

 . در 1090 ميكروسكوپ را تكميل نمود Jansen

$$
\begin{aligned}
& \text {. دVon pleneiz }
\end{aligned}
$$

$$
\begin{aligned}
& \text { در سال • •N ا جايزه نايليون را در باره محافظت نمودن غذا در قطى حايز گرديد. } \\
& \text { Schonlein j }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (INV •) مواد ضد ميكروب رادر عمليات جراحى استعمال نمود . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (كشف نمود كه باكتريا باعث امراض نباتى ميگردند . (BAr) در سال (Barril) } \\
& \text { (} \\
& \text {. در سال ((191ه) ويروس را كشف نمودند كه بالاى باكتريا عمل ميكنند . } \\
& \text { (در سال (} 19 \text {)) مورد استعمال ومفاد پنيسيلين را در طبابت معرفى نمود . }
\end{aligned}
$$

$$
\begin{aligned}
& \text {. در سال ((19ها) اولين سلفايد را كشف نمود Domegk } \\
& \text {. در سال (Konoll and roska } \\
& \text { (} 19 \not 99 \text {) طريق محيط زرع ويروس ها را بالاى انساج انكشاف داد . }
\end{aligned}
$$

مايكــروسكوبِ و انواع آن

مايكروسكوپ معمولى : متداول ترين دستگاهى كه براى مشاهده انواع سلول هاى بكار ميرود ، مايكروسكوپ نورى است كه در آن جسم بوسيله نور مرئى روشن ميگردد ـ تا امروز اين نوع مايكروسكوپ تغيرات فراوانى پيدا كرده است . مايكروسكوپ نورى كه ليون هوك از آن استفاده ميكرد فقط يك عدسى بزرگ كننده بود و آنرا مايكروسكوپ ساده ناميدند . مايكروسكوپ هاى نورى كه امروزه مورد استفاده قرار ميگيرد حاوى دو نوع عدسيه است . عدسيه شيئى و عدسيه چشمى . بزرگنمائى اين قبيل ميكروسكوپ ها حاصل بزرگنمائى هر يك از عدسيه ها است . اكثر مايكروسكوپ ها داراى عدسيه هاى شيئى متعددى است و از اين نظر ميتوان جسم را با بزر گنمائى هاى هختلف مشاهده نمود . مايكروسكوپ نورى جديد قرار شكل (1-1) نشان داده شده است . يك مايكروسكوپ نورى فوق العاده مرغوب ، قادر است تا بار جسم را بزر گتر نشان دهد . مفيد بودن يی مايكروسكوپ نه فقط بدرجه بزر گنمائى آن مربوط ميشود بلكه به قدرت تفكيك' عدسيه نيز بستگى دارد (توانائى جدا كردن دقيق جزئيات جسم) . در حيقت مايكروسكوپ هوك به اندازه مايكروسكوپ ليون هوك در نشان دادن جزئيات ميكروب ها موفق نبوده است گر چه ، مايكروسكوپ هوك بزر گنمائى بيشترى داشته است . علت اين امر اين بود كه عدسيه بكار رفته توسط هوك از نقطه نظر نورى بدقت عدسيه ليون هوك نبوده و در نتيجه تصاوير تاريكى ايجاد مى نمود .
قدرت تفكيك يك مايكروسكوپ عبارتست از توانائى آن در متمايز ساختن دو نقطه نزديك برهم و اين نيرو نشان ميدهد كه عدسيه تا جه حد ميتواند جزئيات شيئى را آشكار سازد . قدرت تفكيك عدسيه به كيفيت عدسيه ، بزر كنمائى ، روش تهيه نمونه شيئى بستگى دارد . حد اكثر قدرت تفكيك بهترين مايكروسكوپ نورى تحت شرايط متعارف 0,2 ميكرون ميباشد زيرا ، اين صفت تابع طول موج نورى است كه براى روشن كردن مايكروسكوپ بكار ميرود . هر قدر طول موج نور كوتاهتر باشد قدرت تفكيك عدسيه بيشتر است ـ از اين رو ميكروسكوپ هاى ابداع شده است كه در آن بجاى نور مرئى از طول موج هاى كوتاهتر استفاده ميشود و با اين ترتيب قدرت تفكيك عدسيه افزايش مى يابد . در مايكروسكوپ الكترونى پرتوئى از الكترونها ميسر خود را روشن كرده و نورى با طول موج 10000 طول موج مرئى ايجاد ميكنند . چشم برهنه انسان قدرت تفكيك برابر . . F ميكرون دارد .

[^1]
 ه- ييجّ آجست قوى §- صفحه دورانى Objecktive مايكروسكوپ تباينى :

گرچهه باكتريا را ميتوان در يك قطره مايع قرار داده و زير مايكروسكوپ معمولى مشاهده كرد ولى به علت شفاف بودن و معمولاً بى رنیَ بودن ، مشاهده دقيق آنمها دشوار است • براى چیيره شدن بر اين مشكل ، شفاف بودن انواع سلول ها ، ، نوع ويزَه ای از مايكروسكوپ نورى بنام مايكروسكوپ’ تباينى ساخته شده است . اين نوع مايكروسكوپ كه احتمالاً متداول ترين ميكروسكوپ ها در لابراتوار هاى تحقيقى براى ميكروب هاى زنده ميباشد با تغير دادن مايكروسكوپ معمولى ساخته شده است . بدين معنى كه داراى وسيله نورى خاصى است كه تباين بين ميكروب ها و محيط اطراف را افزايش ميدهد . با توجه با اين كه سلول ها متراكم تر از محيط اطراف خود ميباشند لذا نور تابيده ، از جسم كند تر از محيط اطراف آن عبور ميكند ـ در نتيجه با وجود آنكه حجره بزر گتر نميشوند ولى خود را نسبت به زمينه محيط بهتر نشان ميدهند . به كمك اين وسيله ميتوان ميكروب هاى زنده را واضح تر مشاهده كرد و حر كت آنما را در محيط رشد مطالعه نمود . اشكال 2a ، 2a عكس مايكروسكوپى يك نوع ميكروب را در زير مايكروسكوپ نورى معمولى و مايكروسكوپ تباينى نشان ميدهده . به طوريكه در اين شكل مشاهده ميشود به كمك مايكروسكوپ تباينى ساختمان داخلى نيز واضح تر به حشهم ميخورد .

[^2]روش متداول ديگَر براى ايجاد تباين بين ميكروب زنده و زمينه آن مشاهده ميكروب با مايكروسكوپ زمينه
 نمونه مورد مطالعه پراكنده ميشود وارد عدسى شيشه ای شده و قابل رويت ميگردد . در اين مايكروسكوپ ميدان ديد كاملاً تاريك بوده و فقط تصوير نمونه در آن نورانى ديده ميشود . (شكل 2c 2) . اين روش ، مشاهده اجسام و سلول هاى را كه با مايكروسكوپ عادى قابل رويت نيستند امكان پذير ميسازد ـ به كمك مايكروسكوپ زمينه تاريك اشريشيا كلى در بزر گنمائى . .1 به طور وضوح ديده شود . براى مشاهده سلول هاى بسيار ناز ك بويزه ميكروب عامل سيفيليس (ترپونماپپاليدوم) كه به سختى با مايكروسكوپ نورى معمولى ديده ميشود ميتوان از اين وسيله استفاده كرد ـ منافع بكار بردن مايكروسكوپ زمينه تاريك براى مشاهله باكترياى زنده اين است كه ميتوان اندازه تقريبى ، شكل و حركت آنها را در حالت طبيعى (بدون بكار بردن روش ثابت كردن و رنگَ آميزى مشاهده كرد .

مايكروسكوپ فلورسانس :
نوع ديگرى از مايكروسكوپ كه در لابراتوار ها براى شناسائى ميكروب ها حايز اهميت است مايكروسكوپ فلورسانس ميباشد . اين نوع مايكروسكوپ پباى مشاهده نمونه هاى كه فلورسانس دارند يعنى به هنگام تابانيدن نور با طول موج هاى مختلف بر آن پرتوافشانى ميكنند بكار ميرود ـ فلور سانس ممكن است صفت طبيعى يك جسم باشد و يا در نتيجه متصل كردن يک تركيب فلورسانت و يک جسم غير فلورسانت پديد آيد (شكل 2d) . متداول ترين كاربرد مايكروسكوپ فلورسانس هنگامى است كه آنتى كر ها را به يك نوع تر كيب فلورسانت آغشته كرده و يا تابانيـن اشعه ماوراى بنغش يا اشعءٔ نزديك به آن به رنگ سبز - زرد دشاهده نمود .
به كمى لامپپ ويزه ای اشعه ماوراى بنفش ايجاد كرده و اين اشعه به جسمى كه با آنتى كر آغشته به ماده فلورسانت رنگ آميزى شده ميتوانند . در اثر تحريى اشعهٔ ماوراى بنفش ماده فلورسانت نور سبز - زرد مرئى از خود ساطع ميكند . در اين مايكروسكوپ براى فراهم كردن عبور نور مرئى و حفاظت چشم ها در برابر اشعه ماوراى بنفش از صافى هاى مخصوص استغاده ميكنند . اين روش ها در ميكروب شناسى كابرد وسيعى دارد . مايكروسكوپ الكترونى :
مايكروسكوپ نورى فقط قادر است شكل ظاهرى باكترى ، اندازه و برخى از اجزاى بزرگ آن را نشان دهد . براى

تاريخچه علم مايكروبيولوثى

بوسيله نول' و هيروسكاَ در برلين ساخته شل . در اين نوع مايكروسكوپ اشعءٔ الكترون ها كه شبيه نور است بوسيله قرقره هاى مقناطيسى متراكم ميگردد . اين قرقره ها همانند عدسيه ها عمل ميكنند . برخى از الكترون ها از نمونه مورد مطالعه عبور كرده و قسمتى از آنها پراكنده شده و برخى قادر به عبور از نمونه نميباشند . الكترون ها بروى پرده حساس به الكترون تصويرى چديد ميآورند كه بوسيله توانائى الكترون ها در عبور از قسمت هاى مختلف نمونه مورد مطالعه مشخص ميگردد . با اين نوع مايكروسكوپ قدرت تفكيك معادل 0,0003 ميكرون (3A 3) كه قريب + •ع برابر قدرت تفكيك مايكروسكوپ نورى است ميتوان بدست آورد (شكل 2e) . به منظور شناسائى بيشتر جزيات ساختمان سلولى ، پثوهش گران غالباً به كمك چاقوى الماس برش هاى بسيار نازک ى حدود 0,02 ميكرون ضخامت) تهيه ميكنند و بايد براى اين منظور برش ها را فوق العاده نازك تهيه كرده و آنها را خشى نمود . ولى چون ممكن است محصول ثابت كردن موجب پيدايش تغيراتى در نمونه مورد مطالعه گردد لذا متخصصين مايكروسكوپ الكترونى بايد در تفسير تصاوير حاصل دقت كافى به كار برده و جزئيات سلولى از معايب ناشى از محصول آمده سازى متمايز سازند .
در سالمهاى اخير روش فريز - ايجپينگ " ابداع شده است كه نياز به ثبات كردن كيمياوى را برطرف ساخته و از اين رو از پيدايش معايب نام برده جلوگيرى ميكند . در اين روش نمونه را منجمل كرده و برش هاى نازكى از آن تهيه ميكنند . آنگاه سطح برش ها را با لايه نازكى از كاربن آغشته مينمايند و اين لايه كاربن به قدرى نازى است كه برش با مايكروسكوپ الكترونى قابل رويت ميباشد . نمونه هاى كه بدين ترتيب تهيه ميشود فوق العاده جالب ميباشد (شكل

در سال هاى اخير پيشرفت هاى مههمى در روش هاى مايكروسكوپی حاصل گرديده است و آن عبارت از ابداع
 . اشعه الكترون بر سطح تابيده و سپس با طاقت تصوير منعكس ميگُردد . مهمترين نقش اين روش اينست كه نمونه هاى نسبتاً بزرگى را ميتوان مورد مطالعه قرار داد و اشكال سه بعدى از آنها تهيه نمود (شكل r) .

[^3]

شكل r-ا اشكال مختلف باكتريا \} ه \{ : فتوميكروگراف باسيلوس مكاتريوم كه جزئيات ساختمانى را بر حسب روش ميكروسكويى و نوع آن نشان ميدهد :
. مايكروسكوپ نورى . اجسام داخلى سلولى آندوسيور است (a (b (c (d (e

شكل

مطالعه مايكروار كانيزم ها توسط مايكروسكوبِ

باكترياى زنده :
مطالعه باكتر ياى زنده توسط مايكروسكوپ هاى نورى مشكل ميباشد زيرا خود باكتر ياى بى رنگَ به نظر رسيده و خوب مطالعه شده نميتوانند اما جهت معلوم نمودن حر كت شان صرف ميتوان آنها را توسط مايكروسكوپ مركب مطالعـه نمود بهترين طريقه مطالعه نمودن باكترياى زنده توسط مايكروسكوپ همانا طريقه Hanging drop (طريقٔ تعليق نمودن) است طوريكه يی قطره محلول در مركز كورسالايد انداخته شده سپس يک سلايد مخصوص را (سلايدى كه در وسط خود داراى حفره باشد) گرفته و چقرى آنرا توسط فلم نازی Petrolutum مسدود بعداً بالاى كور سلايد كه داراى يک قطره مايع كلِّر ميباشد قسم چپیه طورى ميگذاريم كه قطر مايع كلحر به حفره سايد داخل كَردد . سلايد و كورسايد را دفعتاً راسته نموده و قطره مايع بشكل تعليق در آمده و آماده مطالعه ميگَردد . اين سلايد توسط قوهٔ بزرگ و يا ايل اسيرثن مطالعه شده ميتواند .
بايد به خاطر داشت كه اگر باكتريا از يك سمت معينى به سمت معينى ديگَى داراى درى حركت بوده در آن صورت زنده و اگر در يى نقطه متحرى به نظر ميرسد باكتريا زنده نبوده و عوض حر كت باكتريا حركت بيرونى را مشاهده ميكنيد . باكتر ياى تلوين شده :
اكثر مشاهدات و مطالعات باكتريائى كه صورت ميگيرد عموماً زنده نبوده بلكه باكتريا را توسط مواد مختلف كيمياوى تلوين مينمايند كه در اثر تلوين باكتريا حيات خود را از دست ميدهند ـ اعضاى تشكيل دهنده باكتريا نظر به

خواص و مشخصه كه دارند جهت تلوين نمودن به مواد كيمياوى مختلفه ضرورت دارند . , نگی هاى كه جهت تلوين نمودن اعضاى محافظوى باكتريا بكار ميرود بنام Differential stains ياد ميگردد .

جهت تلوين نمودن باكتريا طريقه بسيط و سادءٔ ذيل استعمال ميگردد :
بالاى يك سلايد يى قطره آب انداخته و بالاى آن قطرءٔ موادى از محيطى كه در آن باكتريا زرع گرديده اند انداخته سپس مواد را هموار نموده بعد از خشك شدن (بدرجه حرارت اطاق) باكتريا بالایى سلايد پسسييده بعداً سایلد مذكور دو يا سه مرتبه به هابكى بالاى شعله هراغ بنسن عبور داده و بعداً از سرد شدن سلايد آماده تلوين ميباشد .

طريقه تلوين كردن باكتريا :

تلوين ساده Simple stain بسيط ترين طريقُٔ تلوين بوده سلايدى كه آماده تلوين باشد به بسيار آسانى Basic ، Methylene blue ، Safranine ، Crystal violet ، Gentian violet توسط ملون هاي وغيره رنتى شده و بعد از •ץ الى •ء ثانيه توسط آب شسته و به بسيار احتياط توسط جاذب خشك گرديده اين سايلا آمادهُ مشاهده نمودن توسط مايكروسكوپ ميباشد . اگر خواسته باشيد كه توسط ايل ايمرثن آنرا مشاهده كنيد بالاى سالايد يك قطره تيل انداخته و توسط ابجكتف ايل ايمرزن آنرا مشاهده ميتوانيد .
: Gram stain

 ا- سايدى كه حاوى باكترياى 'Smear است بايد همراى كرستل جنشن و ايوليت شسته شود .
 ثانيه)
 ץ F

 نميدهند يعنى رنگى بنفش خود را الز دست نمى دهند بنام Gram positive ياد مياد مينمايند .
 باكترياى كرام نكَتيف در مقابل مواد فوق مقاومت نشان داده اما در مقابل Streptomycine نسبت به كَرام یازيتو

$:$ The acid Fast stain

اين طريقه بنام طريقُٔ (Ziehl-neelson stain) نيز ياد كرديده و جهت تشخيص نمودن اركانيزم هاى كه
باعث توليد مرض سل ميحَردد استعمال ميشود . اين ها به نسبتى Acid fast ناميده ميشود ، كه زمانيكه همراى رنیَ

سرخ (Carbolfuchsin) تلوين شوند خواص كيمياوى شان باعث ميگردد .كه رنگَ را جذب نموده و استعمال الكل جهت شستن آن لازم نبوده بلكه عوض آن تيزاب نمك س فيصده استعمال ميگردد ـ استعمال نمودن تيزاب رنگى را از
سمير (بدون اركانيزم پاكى نموده و دور ميسازد) .

طريقه تهيه نمودن يكـ محيط زرع خالص :
جهت بدست آوردن محيط خالص يا يی نوع باكتريا طريق مختلف موجود بوده كه بسيط ترين آنها عبارت از طريقُٔ اى است كه قرار ذيل شرح ميگردد :
يك محيط زرع جامد مانند را تميه نموده و در آن باكتريا را داخل كنيد مثلاً در لعاب دهن اقسام مختلف باكتريا موجود مى باشد براى بدست آوردن يك نوع مشخص آن در يك پترديش يك اندازه اگر يا جلاتين ذوب شده را همراى
 و تكثر مينمايد .
در ظرف سپرى شدن يك روز كالونى هاى باكتريا را بدون كمك مايكروسكوپ مشاهده خواهيهم نمود ـ حال اگر يك سوزن تعقيم شده گى را گرفته و به يكى از كالونى ها تماس دهيد و مواديكه در نوك سوزن موجود است در يكـ محيط زرع تعقيهم شده داخل كنيد اين قسم مشخص باكتريا تكثر نموده و تنها يك نوع مشخص و خالص باكتريا ر ا بدست آورده ميتوانيد . اين قسم محيط را بنام هحيط زرع خالص (Pure culture) ياد مينمايند .

محيط هاي زرع (Culture media) :

انواع مختلف باكتر يا بالاى محيط هاى مختلف زرع ميشود بعضى باكتريا بالاى محيطى كه تنها داراى نمى هاى غير عضوى و منابع كاربن (شكر) باشد خوب نمو كرده اما عدهٔ ديگرى (خصوصاً باكترياى كه مرض توليد
 با تمام مواد ، سامان و لوازم آن تعقيم گردد .

محيط هاي زوع مايع (Infusion media) :

يكى از مهمترين و مشهور ترين محيط هاى زرع كه براى زرع نمودن مسلسل باكتريا استعمال ميشود شوربا كوشت كوفته شده و تركارى بوده كه بدون چربو باشد . در اثر جوشانيدن گوشت يا تركارى همراى آ آب بعد از فلتر
 طعام علاوه گرديده تا براى نموى باكتريا ، كاربن ، نايتروجن و غيره مواد غير عضوى را تهيه نمايد . بعد از درست نمودن PH محيط براى تعقيم نمودن و زرع نمودن باكتريا آماده ميباشد . باكتريائى كه در اين نوع محيط ميرويند

كالونى هاى آن لكئهاى كلايد توليد مى نمايد كه بنام (Turbidity) ياد ميگَردد كه اين تربيديتى دلالت بر نموى
باكتر يا ميكند .
اگر منظور از زرع نمودن باكتريا بالاى يى محيط جامد باشد در اين صورت همراى شوربا 1,5 الى 2 فيصد اگر
را علاوه كند اگر خاصيت جلاتينى را دارد يعنى در آب گرم منحل و در آب سرد دوباره منجمد ميگردد (در حدود ...

كتنترول درجه حرارت و اندازه PH
تقريباً تمام باكتريا در PH=7 كه حالت خنثى بودن را نشان ميدهد خوب نشو و نما كرده ميتواند لذا بنابرين منظور عموماً PH محيط هاى زرع را در همين حدود نگاه ميدارند يعنى در حوالى هفت ميباشد .
 سانتى گريد يا پائين تر نشو و نما ميكند اما يك عدةٌ ديگرى در حوالى .V درجه سانتى گريد نشو و نما كرده ميتوانند . باكترياى كه باعث توليد امراض ميگردند به درجه حرارت نارمل بدن انسان يعنى TV درجه سانتى گريد خوب نمو كرده
 ضرورت به اكسيجن : يك دسته باكتريا كه دوستدار اكسيجن ميباشد در هواى آزاد نشو و نما كرده و اكسيجن مورد ضرورت خود را از

آن اخذ مينمايد .
دسته دوم باكتريا كه در عدم اكسيجن هوا زندگى مينمايد و اكسيجن براى آنها مثال زهر را دارد بايد در محيطى
نشو و نما نمايد كه اكسيجن موجود نباشد ـ براى اين منظور طرق مختلف استعمال گرديده اما بهترين و ساده ترين آنما عبارت از علاوه نمودن يك مقدار Na-Thioglycollate در محيط زرع و مسدود شدن دهن تيوب است . اين ماده كيمياوى اكسيجن آزاد را جدا نموده و زمينه را براى نشو و نماى باكترياى غير هوازى مساعد ميسازد ـ در بعضى حالالت ديگر وسايل ميخانيكى جهت رفع نمودن اكسيجن استعمال ميگردد .

تعقيم نمودن سامان و طرق مختلف آن :

جهت بدست آوردن يی محيط خالص (نوع خالص باكتريا) بايد محيط تعقيم گردد يعنى قبل از ملوس نمودن يا آلوده كردن محيط بايد تعقيم گردد ـ طريقه بسيار مشهور و مهرم جهت تعقيم نمودن محيط زرع همانا استفاده از اتو كلاو ميباشد (اتو كلاو مانند ديگ بخار ايفاى وظيفه مينمايد يعنى بخار را تحت فشار استعمال نموده تا درجه حرارت

بلند گردد) .

برای تعقيه نمودن مسلسل درجهٔ فشار اتو كلاو بايد ها پوند فى انج مربع باشد يعنى بالاى هر انج مربع بايد 10 پوند فشار توليد گردد كه در اين مرحله درجه حرارت به اY| درجه سانتى گريد رسيده و براى ها الى •Y دقيقه بايد محيط زرع حرارت داده شود ، براى فلاسك هاى بزر كتتر وقت بيشتر لازم است . بعضى محيط هاى زرع مانند كاربوهايدريت ها كه در مقابل حرارت بلند مقاومت ندارند بايد درجه حرارد درات كار كمتر و

سامان از قبيل فلاسك خالى ، بيكر ، تيوب ، بوتل ، پايپ ، پترى ديش و غيره در داش هاى گرم و داغ تعقيم
ميگردد البته جهت تعقيم نمودن سامان فوق حرارت هاى بلند و وقت زياد بكار است . جهت خشكى نمودن سامان تعقيه شده هواى گرم و داغ تعقيم شده كه داراى درجه حرارت • IV درجه سانتى گريد ميباشد براى مدت دو الى سه ساعت استعمال ميگَردد .

پطرى ديش ها قبل از تعقيه نمودن بايد در قطى ها كذاشته و يا اينكه در كاغذ پيحانيده شود دهن بوتل ها و تستيوپ ها بايد توسط هنبه قبل از تعقيم نمودن هسدود شده باشد تا بعد از تعقيم نمودن مواد مضره ذره بينى در آنمها
داخل نگَردد .

تعقيه, نمودن توسط حرارت خشك :
اين قسم تعقيه توسط داش برقى صورت گرفته كه در آن پيچچكارى ، بيكر ، تستيوپ ، فلاسك و غيره تعقيهم شده ميتواند . تعقيم نمودن توسط حرارت خشك نظر به بخار بهتر بوده زيرا به تمام اجسام يكسان حرارت رسيده و از جانب ديگَر همه چیيز به اندازه لازمه حرارت را جذب مينمايد يعنى اگر بين قطى بعضى سامان و لوازم انداخته بخوبى تعقيم گرديده در حاليكه تعقيم نمودن توسط بخار اين خاصيت را ندارد ـ حرارت خشك براى تعقيم نمودن پودر ها ، مرحم ها و غيره مواديكه توسط بخار تعقيم نميگَردد نتيجه خوبى داده و مورد استعمال قرار گرفته در اين نوع تعقيه

 نظر به مواديكه مورد تعقيم قرار داده ميشود ارتباط دارد . حرارت هاى پست :

حرارت هاى پست جهت محافظه نمودن باكتريا براى معلومات بيشتر و وقت مناسب تر استعمال ميگردد ـ طريقأ كه برای اين منظور بكار ميرود بنام Freeze drying يا Lyophilization ياد ميگردد . در اين طريقه مايكرواركانيزم ها به سرعت به حالت انجماد درآورده شده و بعداً در خلا ها آب شان كشيده شده و به حالت منجمد در

آورده ميشوند . در اين صورت بسيارى باكتريا براى مدت چند سال به حالت زنده محافظه شده ميتواند .

: Disinfection

در اين طريقه مواد يا سامان از مايكرواركانيزم ها مولد مرض پاک گرديده و مورد استعمال قرار ميگييد يعنى ميكروب هاى آنما توسط استعمال نمودن مواد كيمياوى ميكروب كش از بين برده ميشود بايد واضح نمود كه مواديكه در اتو كلاو يا به كدام طريقه ديگر ميكروب هاى آنها كشته نميشود ذريعه مواد كيمياوى كشته ميشود مثلاً مواد غايطةٔ مريضى كه به مرض محرقه مبتلا باشد توسط Disinfection از بين برده ميشود .

: Pasteurization

يی نوع Disinfection Louis pasteur بوده كه توسط اختراع و جهت كشتن مايكرو اگرانيزم هاى كه باعث تخمر هاى نا مطلوب در ساختن Vine ميگردند استعمال شده در عصر امروزى عمل پاستوريزيشن جهت از بين بردن ميكروب هاى شير استعمال ميشود . عملية́ یاستوريزيشن عبارت از عبور دادن شير بالاى يك صفحه نازك داغ شده به حرارت بلند و وقت كم ميباشد يعنى درجه حرارت VVو و VI درجه سانتى گريد و •r ثانيه وقت بكار است تا تمام

ميكروب هاى شير توسط عمليه پاستوريزيشن از بين برود .

: Radiation

اقسام مختلف تشعشع از قبيل شعاع ماوراى بنفش - اشعه مجهول (شعاع ايكس) و اشعd كاما براى تمام مايكروارگانيزم ها مضر ميباشد . در اين مورد نظريات مختلف موجود است . عده از علما را عقيده بر اينست كه شعاعات فوق باعث تغيرات در نوكئيك اسيد هاى حجرات ميگردد . يكى دسته علما عقيده دارند كه در انزايمم هاى اساسى و غشاى حجروى استعمال شعاعات فوق تاثير بارز دارد ـ همه انواع تغيرات يا يكى از آنها توسط استعمال شعاعات مزبور صورت بگيرد . شعاع ماوراى بنفشى : اين شعاع توسط انسان ديده نميشود . داراى طول موج كوتاه بوده و براى كشتن ميكروب ها استعمال ميگردد ـ از كاغذ ، شيشه عادى و خاك عبور كرده نمتيواند براى اينكه موثر واقع شود بايد

> توسط باكتريا جذب و يا اينكه در اثر تماس مستقيم شعاعى موصوف ميتوان آنها را از بين برد .

براى از بين بردن ميكروب هاى هواى اوطاق عمليات ، جاه هاى پر ازدهام ، شيوع امراض سارى ، صنف هاى
مكتب ، لابراتوار هاى باكتريالوزى استعمال ميگردد .

جهت تنزيل دادن تعداد باكتر يا در نان پزى ، كلجٍه پزى ، رستورانت ها و غيره نيز استعمال ميشود . برعلاوه در حوض هاى آب بازى ، آب نوشيدنى و غيره جا ها استعمال گرديده و هنگام استعمال آن بايد چشمه ها از آ آن محفوظ نگَمداشته شود .

تاريخچه علم مايكروبيولوثى

شعاعى ماوراى بنفش در شعاع آفتاب موجود ميباشد . خوشبختانه افغانستان مملكتيست كه نظر به ممالكى ديگًر دارای روز هاى زياد آقنابى بوده و از اين جهت مقدار زياد شعاع ماوراى بنفش روى زمين رسيده و ميكروب هاى سل و غيره را از بين ميبرد .

: Ionizing rays

اشعه ايكس و گاما نسبت به شعاعى ماوراى بنفش قوى تر بوده و قابليت نفوذ بيشتر دارد ـ تا حال از اين شعاعات جهت تعقيم نمودن استفاده به عمل نيامده اما اقسام غذا ها توسط شعاعات موصوف به معرض تجربه قرار داده شده كه در نيتجه طعم ، بو و رنگ آنها تغير نموده لذا هنوز همم استعمال اين نوع شعاعات قابل اطمينان نميباشد .

فشار آسموتيكى :
باكتريا مانند ساير حجرات توسط يك غشاى نيمه قابل نفوذ احاطه گرديده كه اين غشا آب را اجازه داخل و خارج شلن از محلول هاى كه داراى غلظت كمتر است به محلول هاى كه غلظت بيشتر دارند داده عبور ماليكول ها را از يى محيط به محيط ديگَر منظم ميسازد . اين حادثه بنام ازسموس ياد ميگَردد و فشاريكه در اين حادثه توليد ميگردد بنام فشار ازسموتيك ياد ميشود . زمانيكه فشار داخلى حجره باكتريا تغير نمايد يعنى كمتر شود حجرهٔ چملك شده يعنى حادثهٔ plasmolysis رخ ميدهد ـ اما اگر فشار داخلى زياد گردد حجرء پنديده يعنى حادثٔ Turgidity رخ ميدهد .

مواد كيمياوى ميكروب كُشى :
اين مواد و تركيبات عبارت اند از فينول (كارباليك اسيد) كرسيول ها ، فارملين ، كلورين و مركبات آن ، آيودين
ها ، الكلول ها ، اسيد ها ، مركبات سيماب ، مركبات نقره ، هايدروجن پر اكسايد ، رنگ ها (جنشن وايوليت) ، صابون
ها و غيره جهت تمهيه نمودن محلول فارملين بايد تر كيب ذيل صورت گيرد : (

يك حصه محلول فارم الديهايد مثبت 19 حصه آب = محلول فارملين براى از بى بردن سيور ها - تعقيم
نمودن شفاخانه ها ، دستكش هاى رابرى و ديگَر سامان شفاخانه استعمال ميگردد . كلورين نيز جهت كشتن ميكروب ها حوض هاى آب بازى ، آب آشاميدنى و نل هاى كه مواد فاضله در آنها به خارج انتقال داده ميشود استعمال گرديده كه يى حصه كلورين فعال همراى يك ميليون حصه آب يكجا شده و استعمال ميشود .
Tincture of) آيودين براى كشتن ميكروب ها نيز استعمال ميشود . طريقه ساختن محلول آيودين
: قرار ذيل است (iodine

ميآيد كه جهت كشتن ميكروب هاى زخم ها ، بريده گى هاى جلد و غيره استعمال ميگردد ـ محلول فوق بهتر است تازه

ساخته شود زيرا در اثر گذشتن وقت الكل آن فرار نموده و محلول غليظ ميگردد كه اين محلول غليظ اگر استعمال گردد
باعث سوختن انساج ميگردد .

الكل ها نيز بحيث مواد ميكروب كش استعمال شده ميتواند بالاخره بايد علاوه كرد كه شعاعى آفتاب بهترين ميكروب كُش بوده ، نبايد فراموش كرد كه هفته يك مرتبه لباس خواب ، تُشكى ، بالشت ، لحاف ، روجائى وغيره را در اشعه مستقيهم آقتاب از صبح تا شام هموار نموده تا تمام ميكروب هاى كه موجود است توسط شعاعى مستقيم از بين برده شود .
اكثر اصطلاحاتى كه جهت از بين بردن مايكروارگانيزم ها توسط مواد كيمياوى استعمال ميگردد با هم مخلوط و مفهوم حقيقى آنما مبمهم گرديده مثلاً اكثراً بين اصطلاح Antiseptic و Disinfectant مغالطه رخ ميدهد . جهوت رفع اشتباه چند اصطالح ممهم را تعريف ميكنيهم :
انتى سپتيك (Anti septic) : عبارت از يك ماده كيمياوى ميباشد كه نشو و نماى مايكرواركانيزم ها را
توقف داده و يا اينكه زمينه را براى بودباش آنها نا مساعد ميسازد .

ديسانفكتانت (Disinfectant) : عبارت از ماده كيمياوى ميباشد كه باعث از بين بردن مايكرواركانيزم هاى
مولد امراض ميگردد . اكثر اين مواد بالاى سيورهاى باكتريا موثر واقع نميشود .
باكتريوستاتيک (Bacteriostatic) بالاى محيط بودباش باكترى تاثير عميق نموده و باعث توقف آن ميخردد
باكتريسايد (Bactericide) عبارت از يك مادءٔ اى است كه باعث هلاكت باكتريا گَرديده كه در حقيقت
بالاى كپسول باكتريا تاثير نموده و آنها از بين ميبرد .

جرمى سايد (Germicide) عموماً عين مفهوم را دارد مثلى كه يك باكتريسايد دارد ـ همحْنان سپورسايد (Sporocide و فنجى ها استعمال ميشود .
انتى بيوتيك ها (Anti biotics) عبارت از مواديست كه توسط خود مايكرواركانيزم تمهيه و توليد ميشود. انتى بيوتيك ها خيلى زياد بوده كه استعمال آنها زهريت زياد داشته به اين نسبت بايد از استعمال زياد و متواتر آنها
جلوگيرى به عمل آيد ـ جهت استعمال نمودن آنها نكات ذيل را بايد به خاطر داشت :
1- انتى بيوتيى نبايد براى حجرات ميزبان بسيار زهرى باشد .
r- بايد تعداد زياد و مختلف ميكروب ها از بين ببرد .
r- ميزبان بايد در مقابل آن حساسيت نشان ندهد .
¢ استعمال نشود .
انتى بيوتيك ها بسيار ممهم و عمده عبارتند از :
پپ
در 19ヶ9 عالم انگَليسى (Sir Alexander Fleming) در حاليكه Staphylococcus Aureus) زرع كرده بود ، مشاهده نمود كه باكترياى فوق الذكر توسط پوپنک كه بعداً بنام Penicillium notatum طبقه بندى گرديد از بين رفت . ساحه روشن و صاف اطراف پوينى نشان داد كه پوينک از خود يک نوع مركب تهيه و توليد
 تصفيه و تهيه نمودن پنى سيلين به صورت خالص حل نَحرديد از استعمال آن براى رفع مشكالات خوددارى به عمل آمد . در عصر حاضر نام پنى سيلين نه تنها بر يیى مر كب واحد دلالت نميكند بلكه از يك گروپ مر كباتى كه دارای تر كيبات مشابه اند نماينده گى ميكند كه از آن جمله Penicillin G يا استعمال زياد دارد .

ستريبتومايسين (Streptomycin) :

اين هم به ذات خود يى انتى بيوتيى بوده كه توسط اكتنومايست تهيه و توليد ميگردد . اين گروپ اجسام پوپنک مانند بوده كه همراى باكتريا طبقه بندى شده اند . سپر يتتومايسين در مقابل باكترياى گرام منفى موثر ميباشد . گرَهه تاثيرات اصلى ماده فوق تا حال به صورت صحيح فمميده نشده اما گفته ميشود كه غشا و محل تر كيب شدن و

 گيرد باعث بنگس گوش و يا تنبلى در انسان ميگَردد .

تتراسايكلين ها (Tetracyclines) :

تتراسايكلين ها عبارت از سه انتى بيوتيك بوده كه با همديگر از نقطه نظر كيمياوى فرق دارند. وظيفه حقيقى و

$$
\begin{aligned}
& \text { اصلى اينزا كشتن ميكروب ها و مداخله در سيستم انزايمى بوده و توليد انرزى مينمايند . } \\
& \text { تتراسايكلين ها از Strepomyces تهيه گرديده و عبارتند از : }
\end{aligned}
$$

ا- اكرومايسين (Achromycine) يا (Auclines

بر- تيترامايسين (Terramycine) يا (Axytetracyeline
سرعت تعامل ادويه جات :

در اثر استعمال زياد انتى بيوتيى در مقابل امراض بعضى از باكتريا از خود مقاومت نشان ميدهد كه اين يى
پرابلم بز رگ و مهم، ميباشد .

اين مقاومت عبارت از داشتن قدرت از بين بردن انتى بيوتيك بوده كه بهترين مثال آن ترشح نمودن انزايم ميباشد . اين انزايم باعث از بين بردن پنى سيلين كه يكى انتى بيوتيكى ميباشد ميگردد ـ گرحهه بسيار انواع باكتريا موجود است كه انزايم مذكور را ترشح مينمايد اما از آن جمله Staphylococcus بسيار مهم ميباشد . جهت از بين بردن مقاومت باكتريا بايد دو نوع مواد كيمياوى كه باعث مرگى آنمها ميگُردد استعمال شود مثلاً جهت از بين بردن ميكروب سل بايد Amino Salicylic acid Soniazid استعمال گردد . اين طريقهُ تداوى يا از بين بردن ميكروب بنام تاثير Synergistic ياد ميشود ـ از جانب ديگَر امكان دارد كه تاثير آن نسبت به استعمال نمودن يك انتى بيوتيى كمتر باشد كه اين حالت را Antagonism گويند .
يك مشكل بسيار مهمْ كه در اثر استعمال نمودن مواد كيمياوى جهت از بين بردن ميكروب ها بوجود آمده همانا
مسئله حساسيت است كه بنام Allergy ياد ميگردد .
انواع مختلف حساسيت موجود بوده كه مهمترين آنها عبارت از تخريش جلدى بوده كه در اثر استعمال نمودن انتى بيوتيك توليد ميگردد . پنى سيلين يكى از انتى بيوتيك ها مرمه و مشهور بوده كه بعضى اشخاص در مقابل آنمها حساسيت نشان ميدهند . (عצ / / FAY) .
\qquad
\qquad

فصل دوم

مشيخمات بـــاكتريا

باكتريها اور كانيسهم هاى يك سلولى هستند كه اكثراً به صورت آزاد زندگى ميكند و داراى رمزم هاى
جيتنكى و توليد انرزى و سيستمهاى بيوسنتيك لازم براى رشد و توليد مثل خود ميباشند . باكتريها مممترين و متنوع ترين مايكرواور كانيسمها هستند كه تعداد كمى در انسان ها ، جانوران و ساير موجودات توليد مرض مى كند و بطور عموم بدون فعاليت آنها حيات بر روى زمين مختل ميگكردد . تنها تعداد كمى از
 هاى مختلف با يو كاريوتما تفاوت دارند ـ باكتريها ريبوزومهاى S 80 ،اور كانيليهاى غشا دار ماند هسته ، مايتو كاندريا،
 موجودات زنده يوكايوتيك از موجودات زنده باكترى مانند بوجود آمده اند و نظر به اينكه باكتريميا ساختمان ساده داشته و ميتوان به آسانى بسيارى از آنها را در شرايط لابراتوارى زرع و تحت كنترول در آورد ، ميكروب بيولوجستنها مطالعه وسيعى در باره محصول هاى حياتى أنها انجام داده اند . در حدود نوع باكتريا در تمام نقاط دنيا شناخته شدند برخى از باكتريها در خاك و وآب و برخى در غبارهاى اتموسفير و عده در داخل اجسام حيه يافت ميشوند و اين انتشار وسيع شان مربوط به حقايق ذيل ميباشد:

[^4]> ו- جسامت كوچک شان
> r-
> r- توليد مثل بلند شان

ץ F- مقاومت ساختمانى جسمى مخصوصاً اسيور ها (Spore) ها هاى شان .
در مقابل حرارت و تشعشع مواد كيمياوى و شرايط نا مساعد مثلاً سيور هاى برخى باكتريا ها ها ها ها ساعت در آب جوش مقاومت كرده ميتوانند باكتريا ها در محيط هاى مختلف زندگى ميكنند اكثر انواع باكتريها هتروتروف بوده و غذاى خود را از محيط ماحول شان بدست ميآورند . اين نوع باكتريا ها در خاك آب سيستم هاى بدر رفت و اكثر غذا هاى بصورت فراوان يافت ميشوند باكتريها مسئول پوسيدن و تجزيه شدن مواد عضوى نيز ميباشند باكتريا هاى پرازيتى غذا هاى شان را از جسم زنده ميگيرند باكتريها توليد انزايم را مينمايند كه باعث تجزيه پروتين هاى پولى سكرايد ها و ماليكول هاى مغلق ميشوند . و پس بعضى از اين مواد تجزيه شده بحيث غذا مورد استعمال قرار ميگيرد ـ باكتريهاى اتوتروف در آب و گل زنده گی ميكنند هر گاه اين ها فتوسنتک باشند تنها به كاربن داى اكسايد ، روشنى و مواد معدنى ضرورت دارند و اشكال فوتوسنتيى داراى يك نوع مخصوص كلروفيل بنام باكترياكلروفيل و تعداد زياد كروتونوئيد سرخ ميباشند . در فوتوسنتى باكتريائى اكسيجن به حيث محصول فرعى متصاعد نميگردد انواع كيموسنتك انرثى خود را بوسيله يك سلسله تعاملات تحمض و ارجاع بدست آورده و منبع كاربن آنها تنما كاربن داى اكسايد ميباشد . اين ها به محيط هاى كه داراى مقدار فراوان مواد قابل تحمض باشند يافت ميشوند اكثراً انواع تخمر مانند لاكتيى اسيد ، بيوتريى اسيد و استيى اسيد بوسيله باكتريا صورت ميگيرد . تمام مواد حتى يطرول، یارافين و بيوتين توسط باكتريا تجزيه و پوسيده ميگَردد تنها برخى صمغ هاى مصنوعى و پاستيكها در مقابل تجزيه باكتريائى
مقاومت دارند .

اكثر باكتر يها باعث امراض انسانى ، حيوانى و نباتى شده و از طريق زخهم و يا ستوماتا (Stomato) داخل
نباتات و يا حيوانات ميگردند .

تمام باكتر يها كه باعث امراض نباتى ميگردند چوبك شكل بوده و تشكيل سيست (Cystes) نمى نمايند .
باكترياى پاتوجن نباتى در خاليگاه هاى بين الحجروى انساج زندگى ميكنند . تيغه هاى وسطى (Middle (ا تجزيه و گَنديده ميسازند در نتيجه سلول هاى مجرد انساج نباتى ميميرند و انساج به كتله هاى كنديده آب دار تبديل ميشوند . تنها يك عده محدود باكتريا ميتوانند انساج صحت مند را مصاب سازند تا امروز در حدود . . . نوع امراض باكتريائى در نباتات تشخيص شده است . در اين مبحث باكترى هاى شايع با تاكيد بر انواع پاتوجن در انسان به صورت مختصر معرفى ميگردد .

اسييروكتها : اين باكتريها در آبهاى آلوده ، فاضلابجا ،خاك و مواد عضوى در حال يوسيدن يافت ميشوند .
به شكل فنر پيحيده و متحر ك هستند . اندازه آنها از چند ميكرون تا •ه ميكرون است. سه جنس از اسپيرو كتها پانوجن هستند :

1- ترويونما : شامل انواع ترويونما پاليزم است كه اين باكترى عامل مولد بيمارى سيفليس ميباشد .
ץ- بور ليا : اين باكتريا عامل مولد بيمارى تب راجعه ميباشد .
r- لپتوسييرا : اين باكترى از راه شكافهاى و زخمماى پوست وارد ميشود و شايع ترين شكل بيمارى ، التهاب
كليه است .

كو كوسها و باسيلهاى گرم منفى هوازى : جالب ترين باكتريها در اين گروپ انواعى متعلق به جنس سودوموناس است يكى از انواعى سودوموناس ، سودوموناس آئروجينوزا ميباشد كه اين باكترى عفونتهاى مجراى ادرارى ، عفونت هاى زخم و سوختگيها ، آبسه و منزيت را ايجاد ميكند . باكتريها اين گروپ قادر به ساختار انزايم هاى متعددى هستند و بدين نحوه در تجزيه مواد كيمياوى مانند حشره كش هاى كه به خاك افزوده ميشوند كمى ميكنند . مقاومت اين گروپ به آنتى بيوتيكها از نظر طبى حايز اهميت است . باسيل گرم منفى غير هوازى اختيارى : مثل فاميل :آنتروباكترياسه ، اين خانواده شامل گرويى از باكتر يرهاى ساكن روده انسان و ساير حيوانات است. جنس هاى باكتريهاى روده عبارتند از : اشيرشيا ، شيكًال ، كلبسيلا ، آنترباكتر و

اشيرشيا كلى يكى از ساكنين اصلى روده بوده و آشناترين ميكروبى است كه تحقيقات فراوانى بر روى آن صورت گرفته است . سالمونال يكى از باكتريهاى بيماريزا است كه يكى از انواعى آن مولد بيمارى تب تيفوئيد ميباشد . انواع شيگالا عامل اسهال خونى است . كلبسيلا عامل عفونت مجراى تنفسى ذات الريه است . سرشيا عامل عفونت ادرارى و تنفسى است و آنترباكتريا در عفونتهاى مجارى ادرارى نقش بر عهده دارند .
 باكتريهاى گرم منفى غير هوازى : در اين گروپ دو جنس مfه از نظر طبابت به نام هاى نايسريا و موراگزالا وجود دارد ـ نايسريا از اهميت ويثه ایى برخوردار است و پرازيت هاى غشاى مخاطى در انسان بوده و در جه حرارت نزديى درجه حرارت بلن انسان زندگى ميكند . انواعى بيماريزا شامل باكترى مولد بيمارى سوزاك و باكترى مولد ميننزيت ميباشد . باكتريهاى جنس موراگز لا در التهاب نسج منظمه چشهم دخالت دارند .

كو كوسهاى گرم منفى غير هوازى : اين باكتريما اختصاصاً به وصورت جور ایى ، كاهى منفرد ، خوشه ایى يا زنجيرى قرار ميكيرند . و همكى بدون حركت و بدون اسيور هستند . باكتريهاى متعلق به جنس ويلونلا بخش از
ميكروفلور طبيعى دهن و چلاكى دندانى هستند .

كوكوسهاى كرم مثبت : اين گروپ باكتريها از نظر طبى شامل دو جنس استافيلوكوكوس و استرويتوكوكوس هستند . عده اى از باكتريها استافيلو كوكوس مواد توكسين توليد ميكنند كه كرويات سرخ خون و كرويات سفيد خون را نابود ميكنند . حندين نوع عفونت استافيلوكوكى بوسيله نوع استافيلو كوكوس اورائوس ايجاد

باسيلما و كوكوسهاى اسيور دار : دو جنس مهم اسيور دار باسيلوس و كلسترويديهم ميباشند . باسيلوس
آنتراسيس عامل بيمارى سياه زخم كه معمولاً در كاو ، كوسفند و اسب بيمارى توليد ميكند. ميتواند به انسان انتقال رييدا كند . باكتريهاى متعلق به جنس كلسروييوو غير هوازى اجبارى هستند و بيماريهاى كه توليد ميكنند شامل كزاز و بوتوليسم ميياشد .

لاكتوباسيلوسها در روده و دهن زندگى ميكنند . در دهان اين باكتريها نتشى در يوسيدگى دندان به عمهده دارند . در
صنعت از اين باكتريها براى توليد ، دوغ و ماست استفاده ميشود . باكترى بيماريزا متعلق به اين كروري " يستريا
منوسايتوجنز" است كه در توليد آبسه ، انسفاليت و آندوكارديت دخالت دارد .

اكتينوميستها : از جنس هاى مهم اين كروب ميتوان كودينه باكتريوم ، مايكوباكتريوم ، اكيتوميس و
استريتومايس را نام برد .

- معروفترين و شناخته شده ترين نوع كورينه باكتريوم ، كورينه باكتريوم ديفتر يا ميباشد كه عامل بيمارى
. ديقترى ميباشد .
- دو نوع مهم مايكوباكترويوم توبر كلوز كه عامل سل و مايكوباكتريوم كه عامل جذام ميباشد .

 كه فقط در داخل سلول ميزبان قادر به توليد مثل هستند و از اين لحاظ به ويروسها شباهت دارند ـ يكى از امراض

كه عامل مولد آن ريكتسيا ميباشد تيفوس است كه بوسيله شپش منتقل ميشود، انواع از كلاميدياها موجب كورى در انسان ميشوند ．（ Y／／Y（

مورفولوزى باكتريا ：

> از نظر شكل باكتريا را به ههار گروپ تقسيم ميكنند كه ذيلاً معرفى ميشوند .
> I. Coccus كوكس دارای ساختمان هاى كروى
> r.
「．．ويبريوس Vibrios به شكل رشته هاى كوتاه و خميده

شكل سلول يى كيفيت نسبتاً ثابتى در اكثر انواع باكتريا بوده اما شكل سلول ها به اساس كشت باكتريا و كشت
غير عادى تغير ميكند ．برخى باكتريا داراى سلول هاى انشعابى بوده و عدهٔ مايسيليهم＇Mycelium را ميسازند
مانند Mycobacteria
سلول نوع باسيلوس（ Bucilli ）داراى قطر كمتر از 0，5 مايكرون و طول 1，0 ميكرون ميباشد و طويلترين باكتريا طول حدود 500－5 مايكرون طول دارند اكثر انواع باكتر ياهاى كه داراى انواع سلول باسيلوس اند و داراى طول 1 الى ه مايكرون و قطر 0，5 مايكرون ميباشد ．
اكثر باكتريا را يكى جدار سخت پروتوپلاست احاطه كرده است ．اين جدار كه ضخامت آن
كمتر از صد نانومتر（ Nonometer ）ميباشد از يك يا طبقات بيشتر ساخته شده است كه در زير مايكروسكوپ الكترونى جدار هاى سلولى اكثر باكتريا يكنواخت معلوم ميشود و در برخى ديگر باكتريا جدار سلولى داراى اشكال هندسى ميباشد ．برعكس جدار هاى سلولى اكثر الجى ها ، فنجى ها و تمام نباتات خشكه الى از رشته هاى كوپیى كه توسط مايكروسكوپ الكترونى ديده شده ميتوانند ساخته شده است ．ماده اى كه باعث سختى جدار باكتريائى ميگردد مرو یييتيد（Muro 「peptides ）ناميده ميشود ．در برخى باكترياى ديگر يولى مير ها مانند يروتين ها ،
 تركيب Muramic acid（ يكى Amino sugar مخصوص در باكتريا ）به مروييتيد Muropeptid ها ها دارد

[^5]ينى سيلين در مقابل باكتريائى كه جدار هاى سلول شان از اين ماده ساخته شده موثر نميباشند علاوتاً در سلول هاى حيوانى تا هنوز معلوم نگرَرديده از اين جهت ينى سيلين در مقابل سلول ها سمى نميباشد . يك طبقه لزجى داراى ضخامت مختلف در قسمت خارج جدار سلول باكتريا وجود دارد ، هر كاه ضخامت اين طبقه ثابت باشد بنام Cupsula ياد ميگردد .

تيب هاى مورفولوزيكى باكتريا :

ميكرواور كانيزم هاى ايوكاريوت (Eukaryotes) و وروكريوت (Prokaryotes) به ذات خود عمدتاً
 محيط خارج مجزا كرديده و حاوى ساختمانهاى متتوع تحت الحجروى ميباشد ـ دو تيب عمده ساختمان حجروى وجود دارند كه توسط شاخص هاى اساسى از يكديگر متمايز ميگردند . اينها عبارت از حجرات ايوكريوتيكى و كريوتيكى
 ميشود (Eu به معنى حقيقى و Karyo به معنى هسته ميباشند) . موجودات ذره بينى كه حاوى هستئ ابتدائى باشند بنام يروكرويوتها مسمى ميكردند .
(قارج ها ، الجى ها و يروتوزوا به دسته ايوكريوتهيا تعلق داشته و از نتاه ساختمانى شبيبه به حجرات نباتى و

 كروموزوميا يعنى ناقل اساسى خواص ارثى كه متشكل از DNA و يروتين است قرار دارد . در موقع انقسام كروموزومها در بين حجرات دخترى در نتيجه يروسه منلق ميتوز (Mitisis) و و ميوز (Meisis) تقسيمر ميشود . سيتويلازم حجره ايوكريوت حاوى ميتوكاندريا (Metochandria) و كلورويلاست (Chloroplast) ميباشد . غشاى سيتويلازمى كه حجره را ا احاطه نموده به داخل سيتويلازم در شبكه اندويلازمييكى انتقال مى يابد.

 ميتوكاندريا و كلروپالاست موجود نميباشد .

اشكــال بــاكتريا :
تعداد زيادى باكتريا موجودات حيه يى حجروى ميباشند . اينها ممكن است داراى اشكال كروى ، خوبكى مانند
 و معنى تخم يا دانه ر را افاده ميكند) .

نظر به موقيعت نسبى ، كوكها از يكديگر ممكن است پس از انقسام به حندين شكل تفريق شوند . عده از
اينها بعد از انقسام حجروى بصور ت منفرد و مجزا موقيت اختيار مينمايند . جنين اشكال بنام Micrococcus ياد

بغضى اوقات كوكها در موقع انقسام ، اجتماعى را شبيه به خوشه انگّور تشكيل ميدهند . اين اشكال كوكها بنام مسمى ميگُردند . كوكهاى كه بعد از انقسام در يك سطح بصورت جوره الى متصل گرديده اند بنام Diplococcus ياد كرديده و آنعده كوكهاى كه زنجيره هاى را بطول مختلفه به بار ميآورند ، بنام streptococcus تشكيل ميشوند بنام Tetracoccus ياد ميشوند . بغضى كوكها به ساه سطح عمودى متقابل تقسيم شده و موجب تشكل حالت بخصوص مكعب مانند ميشوند كه بنام Sarcina مسمى ميگردد

شكل r r r r
بسيارى از باكتريا ها داراى شكل چوبك مانند ميباشد . قبلاً تمام اشكال چوبك مانند را بنام Bacilli ياد مينمودند (از لغت لاتين Bacillum چوبک خورد گرفته شده است). پس از سال \AVa زمانيكه نبات شناس جرمنى Kon موجوديت 'Spore را در بسيل بيده كشف نمود ، اشكال بكترياى چوبك مانند كه سپور را تشكيل ميدهند بنام بسيل و آنعده كه سيور را به بار نميآورند بنام بكتريا (Bacteria) مسمى گرديدند . بكترياى چوبى

مانند ممكن است داراى شكل استوانه ای با انجامهاى مستقيم و يا بيضوى با انجامماى مدور باشند . نظر به موقعيت متقابل حجرات جداگانه بكتريائى چوبكى مانند پس از انقسام به اشكال ذيل تقسيم ميشوند : بسيلهاى چوبك مانند واقعى كه با موقع گيرى انفرادى (به تنهايى) دپلوبكتريا و يا دپلوبسيلها كه با جوره اى بودن

حجرات مشخص ميشوند و ستريتوبكتريا و يا ستريتوبسيلها كه زنجير هاى به ابعاد مختلفه را تشكيل ميدهند. بكتريائى فنر مانند و يا ييجّ و تاب خورده زياد به ملاحظه ميرسند كه بدو گروپ تقسيه ميشوند ـ گروپ اول

محض قسمتى از دو فنر شبيه كامه ميباشد (شكل \&-a) .

گروپ دوم بكترياى فنرمانند عبارت از Spirochaeta است كه به ذات خود حجرات طويل و باريكى

 () (4a) Sarcina flava - \& gonorrhoeae
 -Ir Azotobacter - II Spirocaete recurrentis - I
 . (Sphaerotilus from walter) - ε chromogenes

بالغ ميگَردد . بكترياى چوبك مانند خورد داراى 0,2-0,4 ميكرومتر و عرض 0,7-1,5 ميكرومتر طول ميباشند .
(IV / V)
در بين بكتريا ها ممكن است باكترياى واقعى عظيهم الجثه نيز به نظر بخورد كه طول آتها به ده ها و و حتى صد ها ميكرومتر بالغ ميكردد . اشكال و اندازه بكتريا نظر به عمر كلهِ ، تركيب وسط زرع و خواص اسموتيكى آن ، درجهٔ

حرارت و ديكر عوامل ممكن است تا اندازه زياد تغير نمايد .
از جمله سه شكل اساسى بكتريا بيشتر از همه كوكها دارایى جسامت ثابت ميباشند . بكتريای پوبك ماند

حجره بكتريايى كه در سطح وسطهاى زرعيه جامد مستقر ميگردد ، رشد نموده ، انتسام يافته و كولونى نسل
بعلى را تشكيل ميدهد . پس از حثد ساعت رشد ، چخنين كولونى تعداد كثير حجرات را به بار ميآورد كه حتى توسط چششم ديده ميشوند . كولونيها ممكن است داراى قوام مخاطى يا خميره مانند بوده در بضضى حالات آنما با رنگَ و

ظواهرى كه دازند بدون كدام مشكلات بخصوص تشخيص شده ميتواند . (321 / XVI)
شكل ه-r: \} צr \{ اشكال بعضى كالونى باكتريا و اكتينوسيتها در سطح وسط هاى

ساختمان حجره باكتريا :
تمام باكتريا ها داراى ديوار حجروى (و يا غشأ) يرده سيتويلازمى و سيتويلازم ميباشند . در سيتويلازم
Snclu sion كه معمولاً در يروسه
استقالبى تشكيل ميشوند موجود ميباشند .

ديوار حجروى داراى استحكام معين و ارتجاعيت بوده و انحنا چذير ميباشد . ديوار حجروى را ميتوان بوسيله ماوراى صوت ، فرمنت ليزوزيم ، سوزن باريى و غيره تخريب نمود . در اين صورت محتويات حجره يعنى سيتوپلازم توأم با اجسام داخلى آن كه با پرده سيتويلازمى احاطه شده اند شكل كره مانند را به خود اختيار مينمايد . حنين حجره كروى كه بعد از بين رفتن ديوار حجروى باكتريا تشكيل ميشود بنام پروتوپلاست ياد ميگَردد ـ از اينجا ميتوان استنباط كرد كه ديوار ، شكل معينى را به حجره باكتريائى ميدهد . ديوار حجروى وظايف ديگُى را هم ايفا مينمايد . ديوار مذكور محتويات داخلى حجره را از تأثيرات قواى ميخانيكى و آسموتيكى محيط خارج حفاظت نموده و نقش عمده را در تنظيمر رشد و انقسام باكتريا و توزيع مواد ارثى به عههده دارد . ضخامت ديوار حجروى از 0,01-0,04 ميكرومتر تغير نموده ، ديوار حجروى داراى منفذ ها بوده و با شبكه) ای از كانال ها و درز ها مجهز ميباشد . ديوار حجروى با پردهٌ سيتوپلازمى از طريق ساختمان نل مانند ارتباطى . متصل گرديده و گمان ميرود كه ديوار حجروى مسئول رنگَ آميزى باكتريا به طريقه گرام باشد (Ponticulus روش رنگ آميزى كه توسط عالم, دنماركى گرام (Gram) در سال MAY به ميان آمد ، امكان تفريق باكتريا را از همديگر ميسر گردانيد . پس از رنگَ آميزى باكتريا بوسيله Gentian violet و معامله آن با محلول آيودين ، عده از حجرات توسط الكل رنگَ خود را از دست داده ، اما حجرات دسته ديگر باكتريا به رنگً مايل به بنغش ملون باقى . ميمانند

بنابر همين شاخص بكتريا ها به دو گروپ تقسيهم ميگردند : باكتريائى كه به طريقه گرام رنگ آميزى ميشوند
بنام گرام مثبت و آن عده كه رنگَ خود را از دست ميدهند بنام گرام منفى ياد ميگردند .
قدرت رنگَ آميزى آنها به طريقه كرام مربوط به اختلاف تركيب كيمياوى ديوار حجروى باكتريا ميباشد .
جز عمده ساختمان ديوار حجروى اكثريت باكتريائى تدقيق شده عبارت از يييتيدوگليكان كه از واحد هاى داى
N-acetylmuramic N -acetylglucoseamine
. است . داى سكرايد ها بوسيله پيوند كليكوزيدى با همر وصل شده و زنجير طويل را تشكيل ميدهند acid مورئين (Murein) به ديوار حجروى خواص استحكامى بخشيده كه در نتيجئ آن حجره باكتريائى قادر به
حفاظت شكل خود ميباشد .

در باكترياى گرام مثبت ديوار حجروى عمدتاً از مورئين چندين طبقه ای ساخته شده كه در آن به شكل مغلق اجزاى انضمامى مانند پروتين ، پولى سكرايد ها و نيز به اصطلاح Teichuronic acid (پولى مير (Glycerinphosphoric acid و Ribitphosphoric acid

منفى مورئين يیى طبته اى بوده و در سطح خارجى آن مقدار زيادى لييو يروتين ، لييو يولى سكرايد و فسفوليييد موجود ميباشد . اجزاى تركيبى متذكره در مورئين خال مانند (Mosaic) موققيت اختيار نموده و خندين طبقٔ
خارجى ديوار حجروى را ميسازند .

مقدار مورئين در ديوار حجروى باكترياى كرام مثبت در حدود هو٪ و و در باكتريائى كرام منفى ه- ها٪ مار ميباشد. به اين ترتيب عكس العمل باكتريا به رنگَ آميزى طريقه كَرام ممكن است در اختلاف مقدار مورئين و و استقرار
آن در ديوار حجروى شان باشد .

تعداد زياد باكتريا معمولاً بوسيله يكى طبقه از مواد احاطه شده كه بر روى يك ديوار حجروى قرار دارد ـ اين ماده عبارت از كيسول و يا طبقه مخاطى ميباشد .
نظر به تركيب كيمياوى كيسول باكتريا به دو تيب تقسيهم ميشود : يكى متشكل از هولى سكريد ها و برخى
ديگر يولى ليتيتيد ها .
اما كيسول هاى وجود دارند كه از ليييد ها (در باكترياى توبر كلوز) ، هيترويولى سكرايد ها و ديگر ماير مواد تشكيل يافته اند . كیسول ها حاوى ^^٪ آب ميباشند لذا اين ها مانع دفاعى آسموتيكى (شكل يوشينه هاى .بر عليه نوذ مقدار زياد و خشك شدن حجره ميگردند .

كيسول هاى حجره را از تأثيرات ناكوار محيط ماحول نيز محافظت مينمايد . ديده شده است كه باكتريائى كيسول دار در چنان محيطى زيست نموده ميتواند كه در آن رشد باكترياى بدون كیسول محدود ميباشد. به ديوار حجروى باكتريا طبقه خارجى سيتويلازمى يعنى Cytoplasmic membrane ميحسيد ، يرده سيتويالزمى متشكل از دو طبقه ليييدى است كه سطح هر كاريام آنبا يوشيده با ورقه يك ماليكولى يروتين

را در بر ميگیيرد . ضخامت عمومى پرده به صورت تقريبى به 9 نانومتر بالغ ميگردد . یرده سيتویلازميكى نقش مانع آسموتيكى حجره باكتريائى را كه تنظيم نفوذ و خروخ مواد را به عهلده دارد ايفا مينمايد . اين پرده موجب تشكل اجسام

> كوچك به خصوصى يعنى ميزوزومها ميگُردد . (/ / / Y)

پرده سيتويلازميكى و ميزوزوم وظايفى را انجام ميدهند كه مختص به ميتو كاندرياى موجودات حيه عالى بوده كه در داخل و يا در سطح آنما سيستم فرمنتى يعنى تدارك كننده انرثى مستقر گرديده است . بر خلاف ميتو كاندريا در پرده سيتوپلازميكى و ميزوزوم هاى باكتريا علاوه بر سيسته تنفسى فرمنت ها و ميكانيزم تنظيم قابليت نفوذ عده از سيستم هاى فرمنتى مخصوص نيز قرار دارند كه در پروساه هاى مانند Azotofixation و . Chemosynthesis
بسيارى از وظايف ديگر مانند بيوسنتز ديوار حجروى و كپسول ، ترشح ايگزوفرمنت ها ، انقسام و تشكل سیور
نيز با پردهٔ سيتوپیازميكى و ساختمان هاى متقارن باكتر يا مرتبط ميباشد .
در تحت پردهٔ سيتوپلازميكى باكتريا ، سيتوپلازم موقعيت دارد . سيتوپلازم يك سيستم كلوئيدى است كه
متشكل از آب ، پروتين ها ، شحميات ، كاربوهايدريت ها ، مر كباب معدنى و ساير مواد بوده كه تناسب آنمها نظر به نوع باكتريا و سن آنها فرق مينمايد . سيتوپلازم باكتريا غنى از ساختمان هاى پرده ای بوده و قسمت هاى باقى مانده آن عبارت از ماتريكس سيتوپهازمى و ريبوزوم ميباشد . ماتريكس سيتوپ⿻ازمى عبارت از فاز مايع آبى است كه عمدتاً از مايكروماليكول پروتين تشكيل يافته و منحيث وسط تقويتى گرانيول هاى حجروى ايفاى وظيفه مينمايد ـ مطالعه ساختمان سيتويلازم خواص ريزه دانه آنرا برملا ساخت كه قطر شان به • •-† نانومتر بالغ ميگردد . بسيارى از اين گرانيول ها ريبوزوم بوده يعنى اجزاى كه •غ٪٪ از RNA پروتين را تشكيل ميدهد • ريبوزوم ها در ساختن پروتين به شكل اجزاى لايتجزا سمهم ميگيرند و بنام
 در سيتوپلازم باكترياهاى Photosynthesic موادى وجود دارند كه آنرا اصطلاحاً بنام Tilacoides ياد ميكنند . اينها در باكترياى بنفش سلفر دار تقريباً •ץ-ه٪ كتلأ حجره را تشكيل ميدهند . تيلاكوئيد ها عمدتاً از پروتين ها و لييبد ها تشكيل يافته اند . تصور ميشود كه مواد تيلاكوئيدى با پردء سيتوپلازميكى و يا با پرده هاى داخلى ارتباط داشته باشند . در تيلاكوئيد ها پگمنت هاى تركيب ضيائى (كلورفيل و كروتينوئيد ها) موجود
ميباشند كه به كمك آنها تر كيب ضيائى صورت ميگيرد .

در سيتویلازم حجره باكتريا اغلباً گرانول ها به جساهت و اشكال مختلفه وجود دارند كه موجوديت آنها را نبايد منحيث علايم ثابت ميكرواركانيزم ها تلقى كرد . حضور آنمها تا اندازه ای زياد به شرايط فزيكى و كيمياوى محيط زيست بستگى دارد . بسيارى از دانه هاى داخل سيتوپلازمى ازمركباتى ساخته شده كه آنها براى ميكروار گانيزم ها منبع انرزى و كاربن را تأمين مينمايند . چنين مركبات معمولاً ساخته ميشوند كه داراى مقدار كافى مواد غذائى باشد ، وقتى مورد استفاده قرار ميگيرد كه شرايط ناگوار تغذيوى بوجود آيد . در حجرهٔ باكتريا مواد كاربوهايدريتى يعنى دانه هاى گليكوجن (نشايسته حيوانى) و گرانيوليز (قرين به نشايسته) منحيث مواد ذخيروى تجمع نموده ميتوانند . در صورت كمبود مواد كاربوهايدريتى در وسط ذريعه دانه هاى گليكوجن و يا گرانيوليز به تدريج در حجره باكتريائى از . بين ميروند
Poly-Beta-) Beta-Butyric acid بسيارى از باكتريا به حيث ماده ذخيروى پولى مير را از يك
. ميسازند (Butyric acid
در حجرات بعضى از انواع باكتريا گرانول ها و ولوتين (Volutin) تجمع مينمايند ـ گرانيول هاى ولوتينى در
عين زمان به نام كرانيول هاى ميتاكروماتيكى ياد ميشود كه عمدتاً از پولى فسفات ها ساخته شده و منح فسفور را به بار ميآورند ـ ولوتين به شكل دانه هاى بزرگ معلوم شده و به مقدار زياد در وسط هاى زرعيه تشكيل ميشود كه غنى

از كليسيرين و يا كاربوهايدريت ها باشند .

$\{\Delta\}-r-v$ شكل
(اشكال ساختمان هاى هستوى باكتريا) :
Bacillus mycoides Proteus valgars -:)

در حجرات Sulfobacteria منحيث اجسام انكلورثن سلفر به ملاحظه ميرسد كه در نتيجئ تحمض
هايدروجن ، سلفايد به بار آمده به شكل قطرات نيمه مايع براق بصورت مستقيم در سيتوپلازم به نظر ميخورد . انكلوڤن سلفر توسط باكتريا به مثابه منبع انرڭى بكار برده ميشود . بعضى از سلفوباكتريا بر علاوه اى قطرات سلفر داراى دانه گك هاى كلسيمم كاربونات بدون شكل معين ميباشد كه نقش آنها هنوز هم واضح نميباشد .

در ماتريكس سيتوپلازماتيكى پروتين هاى قابل حل ، فرمنت هاى مختلفه ، RNA ، پگَمنت ها و مر كبات
پست ماليكولى يعنى كاربوهايدر يت ها ، امينواسيد ها و نوكلوئيد ها نيز وجود دارند .

موجوديت مركبات پست ماليكولى موجب اختلاف فشار آزموتيكى محتويات حجره و محيط خارج ميگردد ـ ازدياد
فشار آزموتيكى داخل حجره در ميكرواركانيزم هاى مختلفه تا اندازء زياد تغير مينمايد .
در سيتویلازم حجره باكتريائى ساختمان معادل هسته قرار دارد كه بنام Nucleoid ياد ميشود .
نوكلئيد حجرهٔ باكتريائى در قسمت مركزى آن موقعيت دارد . تصور ميشود كه نظر به مرحله رشد حجره باكترياى نوكلئيد ها ممكن است به شكل پراكنده (ساختمان هاى منفرد شكل دار) و يا به حالت متشكل (به صورت هستئ واضح و مشخص) به ملاحظه برسند .

ساختمان هاى هستوى كه به حالت پراگنده در ستوپلازم باكتريا قرار دارند داراى شكل چوبک مانند ميباشند
نوكوئيد باكتريا حاوى DNA با كتله ماليكول حدود 10^{9} است . در حال حاضر به اثبات رسيده كه باكتريائى شكل رشته ای حلقوى را داشته و بنام كروموزوم باكتريائى نيز ياد ميگردد . نوكلوئيد باكتريا عبارت از ناقل

عمده ای خواص حجروى و عامل اساسى در انتقال اين خواص به نسل بعدى ميباشد (شكل ^-ケ) . (8 / ه ا)

اعضاى حر كى و ميتود هاى حركت در باكتريا :

بسيارى از باكتريا ميتوانند بصورت آزاد حر كت نمايد و بعضى انواع باكتريا قادر به شنا و حركت در تمام دوران
حيات ميباشند در حاليكه يك عده در بغضى مراحل انكشاف داراى حر كت و عدئ فاقد حركت اند .

طريقه هاى مختلف حركت را ميتوان در باكتريا مشاهده كرد ـ ا اكثراً حركت باكتريا تعلق به موجوديت فالاجل ميباشد و فلاجل ها از طريق ديوار حجروى يا پروتويلازم داخلى در تماس اند طوريكه تذكر داده شد تمام انواع باكتريا قادر به حركت ذريعه فلاجيل (Flagell) نمى باشند بلكه صرف انواع محدودى Cocci بسيلى Bacilli و اكثر . متحر كى اند Spirrilla

نظر به تعداد فلاجيل و طرز تنظهيه آن ميتوان باكتريا را به چثندين كروپ تقسيمّ نمود : I Monotrichous دارای فلاجل واحد در يك انجام حجره اند .
. داراى يك دسته فلاجل در يك انجام حجره ميياشند Lopotrichous .
r.Amphitrichous تعداد زياد فلاجيل در دو انجام جسم موقعيت دارد. .

دو گروپ ديگر باكتريا متحر ك بوده فاقد فلاجيل اند ، يكى از اين گروپ ساختمان طويل و سلندرى داشته داراى حركت مارييجى ميياشد كه توسط يِيج و وتاب خوردن جسم باكتريا صورت ميگيرد ـ گُروپ ديگَر باكتريا متحرك فاقد (فلاجيل بوده حجره به طريق لززيدن در روى سطح حركت ميكند . اين كونه حركت در بكتريا لزجى (Myxobacteria

واضح معلوم نگَرديده است ولى چون در اثناى حر كت يی خط لزجى را از خود بجاى ميگذارند یس چنين گمان ميرود
 كيسول (Cupsule) :

حجرات اكثر باكتريا در حصه خارجى يعنى بالاى غشاى خود داراى يى طبقه لزجى بوده كه ضخامت آن در جنس هاى مختلف باكتريا فرق داشته ، در بعضى باكتريا اين طبقه دو چند ضخامت خود حجره بوده ، اين طبقه را بنام كسول ها Stimelayer ياد مينمايند .
بعضاً كپسول حاوى دو يا چندين جسم بوده كه اين اجسام يا به شكل جوره و يا به شكل زنجيرى در آن
موقعيت دارند . راجع به تر كيب كيمياوى كپسول تا حال معلومات كافى حاصل نگرديده اما اين قدر كَته ميشود كه از مواد نشايسته مانند پولى سكرايد ها تركيب يافته اند ، از جانب ديگر بعضى باكتريا يكى نوع مواد سرشناك را از خود

ترشح نموده كه اطراف و جوانب آن را احاطه مينمايند و در عين حال وظيفه كپسول و يا قشر را انجام ميدهد . انديكيتر ها (Indicator) » معرف «' بالای طبقة كپسول تأثير واضح و سريع ندارد ، مثلاً اكر حجره باكتريا را توسط ميتلين بلو رنگ شود كپسول بيرنگى مانده مانند يی طبقه شفاف و صاف بى رنگى به مشاهده ميرسد ، اگر باكترياى زنده توسط عمليه Emulsion خوبى ديده خواهد شد طوريكه كناره هاى كپسول توسط رنگَ مذكور سياه گرديده و طورى به نظر ميرسد كه كیسول از خود باكتريا جدا گرديده باشد .

باكترياى كه Pathogenic (باعث توليد مرض ميگردند) ميباشد . قشر يا كپسل داراى اهميت زياد بوده
و از نقطه نظر طبقه نيز بسيار مممه ميباشد .
جنس هاى باكتريا كه قشر هاى طويل را تشكيل ميدهند داراى جرايمى اند كه باعث مرض سينه بغل گرديده
و اين جنس ها بنام (Diplococcas pneumoilia) ياد ميگردد . (111 / XIX).

[^6]جـــدار حجروى بــاكتريا :
جدار در اين اجسام بسيار ناز ك بوده و تقريباً 0,01 ميكرون ضخامت دارد اما از جانب ديگُر ديگر بسيار سخت و مقاوم ميباشد . اين جدار شكل حجروى را به حالت طبيعى آن محافظه مينمايد. توسط مايكروسكووپ ديده نميشود اما اگر حجره باكتريا توسط عمليات مخصوص كيمياوى به محل تجربه قرار داده شود به مشاهده خواهد رسيد مثلاً اگر حجرات بكتريا در محلول رقيق القلى جوش داده و بعد همراى معرف 'Crystal violet تلوين نمائيهم جدار حجروى ديده خواهد شد يا اينكه حجرات بكتريا را بطريقه Dyar رنگ آميزى ميكنيم ، جدار حجروى نيز ديده Cetyl pyridinium همراى سيايل ها بريد نيه كلورايد Cango خواهد شد ، در اين طريقه معرف سرخ
 طريقه ديگر معامله نمودن بكتريا همراى محلول نمكيات قوى يا خشك نمودن حجرات بكتريا ميباشد كه درين صورت محتويات حجرات از جدار حجروى دور گرديده و درين حجره جمع ميشود . به اين ترتيب جدار حجروى قابل ديد گرديده و مطالعه آن توسط ميكروسكوپ صورت ميگیيرد . هنگاميكه جدار حجروى دور كرده شود (Prot به شكل كروى در آمده و غشاى حجروى از هم پاره ميشود اما اگر حجرات بين محلول نمك يا قند باشد در اين صورت غشاى حجروى توسط عمليئ آسموزس غلظت هاى هر دو محيط را (محيط خارجى و محيط داخلى حجرات) به صورت متعادل نگاه ميدارد . جدار حجروى از یروتين ها ، شحميات و كاربوهايدريت ها تركيب يافته كه مقدار هر كدام در باكترياى مختلف فرق ميكند .

يكى نوع انزايیم است كه در سفيدى تخم ، اشك چشم و ديگر منابع طبيعى يافت ميشود .
بالاى كاربوهايدريت جدار حجروى باكتريا تاثير نموده و آنرا منحل ميسازد . (\&/٪)
غشاى سايتوپـازمىی :

زمانيكه باكترياى جوان و فعال تحت مايكروسكوپ مطالعه شود به شكل كتله هاى بيرنگگ به نظر ميرسند و از
حيث رنگ همراى آب كمى فرق ميداشته باشند . سايتوپِلازم به شكل متجانس ديله ميشود . غشاى سايتوپلازمى انزايهم هاى متعددى داشته خصوصاً انزايهم هاى كه در عمليه تنفس دخيل ميباشند ـ اگر به اين غشا صدمه وارد كَردد باعث مرگ باكتر يا ميگردد . تا حال تر كيب كيمياوى اين غشاً به صورت اطمينان بخش معلوم نيست اما كفته ميشود

كه داراى ساختمان مغلق بوده و مقدار زياد（ Phospholipid ）ها همراه با پروتين و بعضى پولى سكرايد ها در تر كيب آن موجود ميباشد كه مقدار پروتين ヶ\％و مقدار شحم هr－• \％ميباشد ．

سايتوپــــالازم：
سايتویلازم داخل غشأى سايتویلازمى موقعيت داشته كه به سايتوپلازم نباتى و حيوانى خيلى شباهت دارد ．
عموماً داراى آب ، انزايم ، پروتين و رابيونوكلئيك اسيد RNA بوده كه شكل ذرات كوچك و يا دانه هاى كوچك
موجود است كه بنام Vibosomes ياد گرديده و داراى انزايهم هايست كه در تر كيب پروتين ها سهم فعال دارند ． بعضى جنس هاى باكتريا دانه هاى كوچکى كاربوهايدريت را ذخيره نموده كه در اين صورت همراى معيار هاى مختلف رنگَ هاى مختلف را نشان ميدهد ، مثالًا از جمله كاربوهايدريت كلايكوجن（ نشايسته حيوانى ）همرا محلول آيودين ، پوتاشيه ايودايد رنگ سرخ ميدهد 》 انگلوثن＂Inclusions ）اين به شكل ذرات كوچک در سايتوپلازم حجره́ باكتريا موجود بوده به حيث اجزاى دايمى آن شناخته نميشود（ Inclusion ）＇ها عبارت از و（ دانه هاى كوچֶك سياه كروماتيكى كه از قطرات كوچک شحميات（ Metachromatic granulec ．ميباشد ．قطرات كوچک شحميات در تركيب خود عمدتاً Voly－Beta hydroxybutarat دارند Volutin「 دانه هاى كوچى ميتاكروماتيكى از جمله مواد سايتوپلازمى بوده ، هر گاه تلوين شود رنگى تيز را بخود اختيار مينمايد ． اين اجسام در بسيارى بكتريا Pathogenic خصوصاً بسيلى Diphtheria（ خناق ）موجود ميباشد ، حتى تشخيص اين مرض توسط همين اجسام بخوبى صورت ميگيرد ．اين اجسام بعد از تلوين نمودند توسط ميتلين بلو يا ．به رنگ نصوارى روشن به ظهور ميرسد ، در بعضى جنس هاى بكتريا اين ها موفقيت هاى مختلف Tolo iondin را در حجره اخذ مينمايند ．

در سابق دانه هاى ميتاكروماتيكى بحيث هسته و اجسام توليد كننده نسل باكتريا تلقى ميشد اما قرار معلومات
جديد اين ها مواد غذائى را در حجرات بالخ و رسيده و بعضى اقسام باكتريا موقتاً ذخيره نمى نمايند .

[^7]
مواد هستوى :

در اثر تحقيقات علمى جديد ، علماى مايكروبيولوجى ثابت نموده اند كه بكتريا داراى هسته بسيار ابتدائى ميباشند زمانى كه حجرات باكتريا توسط رنگ هاى قلوى تلوين ميگَردند ، مواد هستوى بخوبى مشاهده نگَرديده زيرا در سايتويلازم مقدار زياد R.N.A موجود ميباشند . اگر رايبونوكلئيك اسيد توسط عمليه هايدروليز ذريعه اسيد و با معامله نمودن با انزايهم (Ribonuclease) و به احتياط كامل دور كرده شود و بعداً حجرات همراى رنیى هاى قلوى تلوين گردد . اجسام كروماتين Chromatin bodies به مشاهده خواهد رسيد . هسته توسط مايكروسكوپ الكترونى بوضاحت ديده شده خصوصاً قبل از اينكه حالت انقسام را بخود اختيار
نمايد ، ديده ميشود .

از حيث تركيب كيمياوى هسته داراى .Deoxy ribonucleic acid) D.N.A) بوده كه توسط كدام غشائى , پوشيده نميباشد لذا كقته ميتوانيم كه يكى از فرق هاى كه بين هسته باكتريا و هسته اجسام باكتريا و هسته اجسام عالى موجود ميباشد . اين است كه در بكتريا غشاى هسته وجود نداشته در حاليكه در اجسام عالى غشاى هستوى وجود دارد . مواد هستوى در حجره باكتريا داراى DNA بوده كه به شكل رشته هاى بندلى به مشاهده ميرسد البته شكل اين رشته هاى بندلى نظر به محيط تغير پذير ميباشد يعنى گاهى به شكل فيته ایى و گاهى به شكل طولانى نيز به نظر ميرسد بايد دانست كه هسته باكتريا تابع مراحل انقسام غير مستقيهم (Mitosis) نبوده و عمليه

توليد مثل در باكتريا :

توليد مثل در اكثر باكتريا بوسيله انشقاق دو كانه Binary-Fission صورت ميگيرد . نوكلوئيد (Nucleoid) مينمايد . اين جدار عرضى كه از دو سلول جديد تشكيل ميشود از هم مجزا ميگُردد ـ در برخى انواع جدار نازى غشاى قبل از ظهور جدار عرضى تشكيل ميشود . اين تقسيهم با سرعت عجيبى ادامه مى يابد . قدرت توليد مثل باكتريا ها خيلى بلند است طوريكه بعضى از انواع مثلاً Vibrio comma در محيط مساعد

) توليد ميشود كه از سياره ماه بزر گتر خواهد بود . خوشبختانه انواع مختلف قوه هاى طبيعى مانع اين تكثر باكتريائى ميگَردند . در طبيعت رقابت با اجسام حيه ديگر ، كمبود مواد غذائى ، تجمع مواد سمى كه بوسيله باكتريا ها ترشح ميشوند و تغيرات درجه حرارت و رطوبت شدت نموى باكتريا ها را كنترول ميكنند . علاوه بر انشقاق Fission توليد مثل هم چֶان بوسيله جوانه زدن Badding يا بوسيله سپورنجيو (Sporangio spores) كويند يا ((${ }^{\text {F }}$ قورت ميگيرد . اكثر باسيلوس ها توليد سلول هاى ركودى مينمايند كه آن ها را ميتوان بدسته اندوسيور Endospres و سيست (Cyste) تقسيم نمود . اندوسيور ها عبارت از ساختمان هاى مقاوم داراى جدار هاى ضخيم كه در داخل سلول مادرى تشكيل ميگَردند . يكى قسمتى از مواد بشمول مواد ارثى بوسيله يكى جدار احاطه گرديده و آن را از متباقى سلول مجزا ميسازد . ظرفيت آب اندوسيور بسيار كم و ساختمان كيمياوى جدار آن از جدار سلول جسمى بكلى متفاوت است ـ اندوسپور ها در مقابل اوضاع نا مساعد محيطى مقاومت زياد دارند . در بعضى انواع اندوسپور ها قادر اند تا مدت پنجاه سال زندگى . خود را حفظ نمايند . وقتيكه اندوسيور ها جوانه ميزند به يك سلول جسمى واحد تبديل ميشوند Viobility بنابر آن تشكيل اندوسيور ها در بالاى تقليل يا مضاعف افراد كدام تاثيرى ندارد . سيست Myxobacteriales
تشكيل ميگَردد .

در تشكيل سيست تمام سلول باكتريائى مدور گرديده و توسط يى جدار ضخيهم احاطه ميشود مانند اندوسيور ها اين ساختمان هاى مقاوم نيز به يك سلول جسمى منفرد تبديل ميشوند .

تشكيل و توليد سپيور در باكتريا :

بعضى انواع باكتريا مانند بسيلى قادر به تغير شكل بوده كه عموماً به شكل كروى يا دايروى در ميآيند . اين
تغير شكل باعث توليد نمودن يكى نوع استحكام گرديده و بنام Spore ياد گرديده كه هر واحد بسيلوس يك سپور جداگانه توليد مينمايند و داخل يك حجره واحد ميباشد اما در بعضى جنس هاى بسيلى به ندرت دو يا سه سيور در يك حجره واحد ديده ميشود . اين سيور ها در مقابل درجه حرارت بلند و بعضى شرايط نا مساعد مقاومت زياد داشته و جسم باكتريا را از تلف شدن نجات ميدهد ـ زمانى كه شرايط محيطى مساعد گرديد سيور جوانه زده و باكترياى بسيلى از آن خارج ميگردد . توليد سيور باعث ازدياد باكتريا نگَرديده اما دريوپنك ها باعث ازدياد آن ها ميگَردد ـ طريقه كه در

[^8]آن سیور توليد ميگَردد بنام Sporolation يعنى تشكيل سيور ياد ميگَدد . تنها دو نوع باكتريا قدرت توليد نمودن سیور را داشته كه هر دو نوع آن شكل ميله مانند را دارا ميباشد و آن ها عبارت اند از :

ا- بسيلوس (Bacillus) : تقريباً تمام اعضاى اين نوع هوازى Aerobic ميباشند يعنى در موجوديت اكسيجن زندگى كرده ميتوانند بعضى اعضاى اين گَروب هم در موجوديت هوا و در عدم موجوديت هوا به زندگى خود ادامه داده ميتوانند . اين نوع بكتريا بنام Facultativ ياد ميگردند . عضوهٔ مضر باسيلوس Anthrax ' نام داشته و هوازى ميباشند . اين باكتريا باعث توليد مرض Bacillus anthrous
انسان ها و ديگر حيوانات ميگردد .
(اعضاى اين جنس غير هوازى Anearobic : Genus clostridiam ميباشند يعنى در عدم موجوديت اكسيجن هوا زندگى ميتوانند و اكثر اعضاى شان توليد زهر نموده كه به انسان ها بسيار مضر
ميباشد . سه قسم مشهور آن قرار ذيل اند .

- Tetanus ايخردند . مرض تيتانوس بنام
. نيز ياد ميگردد Lockiaw
(يا كزاز ، يك بيمارى عفونى حاد دستگاه عصبى است . علت آن مواد سمى يك عامل
بيماريزائى غير هوازى بنام كلستريديوم تتانى (Clostridium tanani) بوده كه باعث بروز علايم كزاز ميشود ، اين تو كسين تتانواسياسمين ناميده ميشود . اين باكترى در گرد ، غبار ، خاكى و رده حيوانات گياه خوار مانندا اسب و گاو وجود دارد ـ اين ميكروب از طريق زخم يا خراشيدگى پوستى وارد بدن ميشود ـ علايهم شان بعد از سه هفته ظاهر ميشود (علايهم مريضى ميتواند از زمان ذكر شده زودتر يا ديرتر بروز كند) . ابتدا مريض نا آرام ميشود ، سيس سختى عضلات ماهيچه و ناتوانى در باز كردن دهن (Lock jaw) ايجاد ميگَردد ، گردن سخت شده و انقباض در
anthracis
در استراليا ، روسيه و امريكا جنوبى عموميت بيشتر دارد ـ سياه زخم دو نوع است :
ا- ا- نوع خارجلى .

$$
\begin{aligned}
& \text { ميرود آلوده به باسيل سياه زخم از طريق سوزاندن و ضد عفونى كردن در حال حاضر هصئون سازى توسط واكسين عليه سياه زخهم در انسان مقدور نيست. }
\end{aligned}
$$

عضلات صورت رخ ميدهد . در اثر انقباض شديد ماهيحهه هاى پشت و كمر به طرف عقب خميده گى پيدا ميكند كه اين حالت را انقباض كزازى (Opisthotonus) مينامند . كوچكترين تحريى (مانند جريان هواى سرد ، صدا ، نور) ممكن است باعث بروز تشنج شود و اين تشنج ها ميتوانند باعث مرگ مريض شوند . مجرد بروز علايم مريضى ، مريض بايد به شفاخانه انتقال شود ، مريض بايد به يك اطاق جدا ساكت و

تاريك با هواى ملايمه ، بسترى شود و غذاى مريض بايد سيرمُ باشد .
-

نبوده بلكه از خود بی نوع زهر ترشح ميكند كه بسيار مهلك است . (19 / 82 (II)

تغذيه و ميتابو ليزم در باكتريا :

تغذيه حيوانى و نباتى : واضح است كه تمام موجودات حيه جهت ادامه حيات خود به مواد غذائى ضرورت دارند . اين مواد غذائى بعد از صرف شدن توسط جسم موجود حيه باعث دو مرحله
مهم گرديد كه آن ها قرار ذيل اند :

ا- تركيب پروتوپلازم
r- تهيه انرجى براى اجرا نمودن تمام فعاليت هاى حياتى
پروتوپازم در تمام موجودات حيه از قبيل انسان ، باكتريا و غيره متحانس ميباشد ، پس كقته ميتوانيهم كه غذا
اساس حيات تمام موجودات زنده را تشكيل ميدهد ـ به الفاظ ديگر تمام موجودات حيه جهت ادامه حيات خود به تغذيه
ضرورت دارند .

ميدانيم كه در غذا مواد عضوى و غير عضوى دخيل بوده كه توسط جسم حيه به شكل محلول در آورده شده و از راه غشاى سايتوپازممى داخل حجرات جسم حيه ميگَردد ، جهت هضم نمودن مواد غذائى بايد حجرات جسم حيه ساختمان هاى داشته باشد تا آن را از تشكيل ماليكول هاى بزرگى به ماليكول هاى كوچکى پارچه نمايد يعنى ، ماليكول هاى بزرگ و پیچچيده پروتين را به امينواسيد قند ها (كاربوهايدريت ها) ، شحميات كه ماليكول هاى نسبتاً كوجڭتتر اند تبديل نموده و داخل حجره نمايند . مواد غذائى كه حجرات به آن ها ضرورت دارد قرار ذيل اند :

[^9]\[

$$
\begin{aligned}
& \text { ا- كاربن (كاربوهايدريت) } \\
& \text { r- r- نايتروجن (پروتين) } \\
& \text { r- } \\
& \text { + + أ ويتامين ها } \\
& \text { ه- آب }
\end{aligned}
$$
\]

انرزى نيز از جمله منبع مهمم حياتى بوده كه بدون آن حجره قدرت تركيب نمودن پروتوپازم و انجام دادن
ديگًر امور حياتى را ندارد ـ انرجى در باكتريا توسط تعاملات كيمياوى حاصل ميگردد .
اكثر باكتريا مواد ضرورى غذائى (كاربن ، نايتروجن ، آيون هاى غير عضوى و غيره) را از مواد عضوى توسط
تجزيه نمودن آن ها حاصل مينمايد ـ اين طريقه سه مرحله را حايز ميباشد:
(1) تجزيه نمودن مواديكه داراى پروتين ، كاربوهايدريت و شحميات ميباشد .

「
بعضى باكتريا تنها و تتها مواد غير عضوى را جهت تعمير نمودن پروتوپالازم و توليد انرجى استعمال مينمايند . از
نقطه نظر تغذيه بين حيوانات و نباتات يك فرق ممهم موجود است كه عبارت از هضم نمودن مواد جامد ميباشد مثلاً آميب ذرات جامد را بين واكيول هاى بدن خود و آن ها را به پارچه هاى كوچكتر توسط انزايهم هاى تبديل و بالاخره داخل پروتویلازم نموده كه در نتيجه انرجى توليد گرديده و باعث تعمير پروتویلازم و پيشبرد امور حياتى ميگردد ، برعكس نباتات مواد غذائى را به شكل جامد هضم نتوانسته و مجبور اند غذا را به شكل محلول اخذ و هضم مينمايد عمليه هضم غذا توسط نباتات بنام (Holozoic) ياد ميگَردد همر چنان عمليه هضم غذا توسط نباتاتى كه رنگى سبز دارند بنام (Holophytic) ياد ميگردد . ميدانيم كه نباتات عالى مواد غذائى را توسط ريشه اخذ مينمايند ـ باكتريا كه نباتات بدون ريشه ميباشند بايد در بين مواد غذائى كه به شكل محلول غوطه ور باشد و غذاى خود را اخذ نمايند . جهت بدست آوردن غذا بعضى اقسام باكتريا از خود انزايم ترشح نموده تا مواد غذايى را به شكل محلول در آورده و بعداً از آن تغذيه نمايد ـ مثلاً براى اينكه باكتريا از پايه تليفون يا برق بحيث مواد غذائى استفاده نمايد بايد چوب (كاربوهايدريت) آن را تخريب يعنى به شكل محلول در آورده و بعداً آن را تغذيه نمايد البته انزايم ها بالاى كاربوهايدريت تأثير نموده آنرا به شكل محلول در ميآورد. اينكه كدام نوع انزايم بالاى كدام قسم مواد غذائى تأثير نموده و آن را محلول ميسازد در آينده به بحث به ع عمل ميآوريم

انزايم, هاى باكتريا :

انزايهم ها موادى اند كه از نقطه نظر كيميا بنام كتلست ها ياد ميشوند » كتلست عبارت از يك ماده است كه تعامل كيمياوى را سريع و يا بطى ميسازد در حاليكه خوش در در خته تعامل كيمياوى بدون كم و كاست و تغير باقى مى ماند « . پس گفته ميتوانيم كه انزايمه ها كتلست هاى عضوى بوده كه در جسم حيه فعاليت مينمايند . تمام حجرات زنده داراى اقسام مختلف انزايم ميباشد چون باكتريا از جمله اجسام حيه ميباشند داراى انزايمه هاى مختلفى بوده كه هر قسم آن بالاى يك قسمر ماده مخصوص و مشخص تاثير نموده و تنزا يكى نوع تعامل كيمياوى صورت ميگيرد ـ اين خواص مشخصه انزايمى بنام Specificity ياد ميشود ـ وظيفه انزايمه بالعموم از نام آن معلوم ميشود به اين معنى كه پِوند (ase) از انزايم بودن نمايندگى ميكند ذيالً يك تعداد انزايهم ها را با تعاملاتى كه اجرا مينمايند ذكر ميكنيهم :
كه باعث عمليه تحمض (اكسيديشن) ميكَردد . Oxidase
كه باعث آزاد نمودن هايدروحن ميگردد .
كه Redactase
كه باعث آزاد نمودن كاربن داى اكسايد ميكردد .
كه باعث پارچه نمودن نشايسته به قند ساده (كلو كوز) ميگر دد .
كه باعث پارحه نمودن شحمه به اسيد شحمى كليسرول ميگَردد .

انزايمه هاى باكتر يائى به دو كروب عمده يعنى Exdo enzymes و Exo enzymes تقسيم ميشود . Endo enzyme (انزايمه هاى داخلى) : حینانجه از نام ايشان معلوم ميشود . اينها در داخل حجره فعاليت داشته وظيفه عمده و اساسى اين انزايمه ها همانا تركيب نمودن يروتويالازم و آزاد نمودن انرثى

ميباشد
Exo enzymes .r (انزايهم خارجى) : اين انزايمه ها توسط ترشح غشاى نازك سايتويلازمى حجره به خارج فعاليت مينمايند . انزايمه هاى خارجى در باكتريا هاضموى بوده كه وظيفه آنيا يار آريه نمودن غذا به
 نوع انزايم را بنام Hydrolaxs نيز ياد مينمايند زيرا اين انزايمه ها بالاى غذا تاثير نموده و توسط تعاملات كيمياوى غذا را به شكل مايع (محلول) در آورده كه بعداً توسط حجره جسم موجود حيه (

باكتريا) جذب و توليد انرزى مينمايد . به عبارت ديگً اين انزايم ها مواد غذائى (Hydrolize)
مينمايد .

چچون باكتريا بالاى پايه هاى تلگُ اف برق ، تليفون ، كاغذ ، اجسام چوبى ، كتاره هاى خانه ها ، مواد عضوى ، قير سر ك ها ، اجساد مرده حيوانات و نباتات ، محصولات پطرولى به شمول پطرول و غيره حمله نموده و آنها را فاسد ميسازد لذا باعث وارد نمودن خسارات قابل ملاحظه ميخردد .

باكتريا داراى سيستم انزايمى بوده به اين معنى كه انزايم ها به يك نظمر و نسق ايفاى وظيفه نموده و باعث
تعاملات كيمياوى مختلف ميگَردد كه تعاملات كيمياوى به شكل زنجير يكى بعد از ديگَرى اجرا ميگردد ، لذا محصول
يى نوع تعامل كيمياوى به حيث مواد خام تعامل كيمياوى ديگًر استعمال ميگردد .
نظر به جنس هاى مختلف باكتريا انزايم هاى آن نيز مختلف ميباشد . پس دانستن انزايم هاى باكتريا ، در
صنف بندى آنما خيلى موثر بوده و سمولت پيش ميكند ، مثلاً سلمونلاتايفوسا (Salmonella typhosu) كه يى نوع باكتريا ميباشد باعث مرض لكه روى ميگردد و هم چنان استراچياكولى Escterichiacolll در روده انسان ها زندگى ميكند و يك نوع ديگر باكتريا با هم ديگر خيلى مشابه ميباشند . اگر انزايمه هاى كه اين دو نوع باكتريا ترشح مينمايند تحت آزمايش قرار داده شود به مشاهده خواهد رسيد كه اولى قدرت تخمر نمودن لكتوز را
نخواهد داشت در حاليكه اخيرالذكر قدرت تخمر نمودن لكتوز را دارد .

بصورت عموم انزايم هاى كه توسط باكتريا ترشح ميشود تمام زهرى بوده و باعث توليد مرض ميگُردد .
برعلاوه باكتريا از خود مواد زهرى را ترشح مينمايد كه بنام Toxin ياد ميگردد . باكترياى خود خوار و بيگانه خوار (bacteria Autotrophic and Heterophic) : از حيث گرفتن مواد غذائى و طريقه بدست آوردن انرزى باكتريا به دو صنف بزرگى و عمده تقسيهم ميگردد . باكترياى خود خوار (Heterotrophic) و ديباشد. باكتريا خود خوار مواد غير عضوى را به حيث مواد غذائى استعمال نموده و قابليت تجزيه نمودن مواد عضوى را ندارند . برخلاف باكترياى بيگانه خوار مواد غير عضوى را تجزيه نتوانسته و جهت تغذيه از مواد عضوى مغلق و پيجییده به حيث طفيلى استفاده مينمايند يعنى زندگى طفيلى دارند . يى تعداد بسيار كم و قليل باكتريا به صنف باكترياى خود خوار مربوط بوده كه مقدار لازم كاربن را از كاربن داى اكسايد و نايتروجن را از مواد نايتروجن دار غير عضوى مانند امونيا و نايتريت ها Natrites (NO_{2}) ميباشد حاصل ميدارند ، اين موجودات ذره بينى بعضاً ميتوانند كه بعضى مواد عضوى را تجزيه نمايند يعنى منحصر به مواد

غير عضوى (كاربن و نايتروجن نميباشند) . اين قسم باكتريا كه هم مواد عضوى و هم مواد غير عضوى را تجزيه كرده بتوانند بنام باكتريا Fartiol autotrophe
| انرزى ايكه جهت تجزيه نمودن مواد بكار برده ميشود توسط عمليه فتوسنتز يا توسط عمليه
Redaetion Nitrofying يوده و بنام باكترياى نايترو فاينگا Nitrobucteria
 امونيا گرديده آنرا به مواد پروتينى باكتريائى مبدل ميسازد .

آنرا به No3 متحمض ميسازد . به اساس كفته هاى فوق باكترياى خودخوار براى انسانها از حيث آماده ساختن خاى براى روئيلن و زرع نمودن نباتات بسيار داراى اهميت ميباشد

باكترياى بيگانه خوار كه بنام طفيلى و توف طفيلى Saprophyle و Parasite نيز ياد ميگردند جهت بدست آوردن غذا قدرت تجزيه نمودن مواد غير عضوى را نداشته و بالاى مواد عضوى حمله نموده و از آن مواد غذائى خود را حاصل مينمايند . يی عده اين موجودات از مواد عضوى پوسيده شده به حيث غذا استفاده مينمايد . باكترياى كه به اين ترتيب غذا حاصل ميدارند بنام » Saprophyte « ياد ميشوند ـ اكثراً هيتروتروف ها در امعا و . ديگَ اعضاى بدن حيوانات و انسانها زندگى ميكنند

آنهائيكه به شكل طفيلى Parasite وجود دارند عموماً بالاى انساج حيوانات و نباتات و انسانها به سر ميبرند . هم طفيلى ها براى انسانها مضر نميباشد ـ موجوديت بعضى آنها در بعضى حصص بدن مثلاً روده كه جهت تركيب نمودن بعضى ويتامين ها حتمى ميباشد لازمى است . كه توسط شيمائى دوران نايتروجن نمايش داده ميشود : (צ؟ /

[^10]

شكل • •

ميتابوليز م در باكتريا :

ميتابوليزم عبارت مجموعه تمام فعاليت هاى كيمياوى كه در حجره زنده (نباتات و حيوانات) صورت ميگيرد ،
ميباشد . اين عمليه داراى دو مرحله مرمم حياتى ميباشد :
》 Anabolism . ا عمليه تعمير " : در اين مرحله تر كيب پروتوپالام صورت ميگيرد يعنى ماليكول هاى

انرزى آزاد ميگردد .

Catabolism .
 بيشتر آزاد ميگردد . طور خلص گفته ميتوانيهم در مرحله انابوليزم پروتوپالام تر كيب و تعمير اما در مرحله
كتابوليزم پروتوپلازم تخريب ميگردد .

دو مرحله فوق در تمام زندجانها صورت گرفته و چون باكتريا زندجان ميباشند لذا در آنما صورت ميگيرد . زمانيكه كه باكتريا مواد تحمض شده Exo enzyme را جذب ميكند . در عين حال انرزى نيز توليد مينمايد . زيرا تعاملات Exo enzyme مرحله كتابوليزم را طى مينمايد پس سواليكه در اينجا پيدا ميشود اين خواهد بود كه چطور باكتريا و يا كدام موجود حيه ديگر يح مقدار انرزى را بلعيده ميتواند ؟ : ما براى حل مطلب فوق ذيلا به شرح
عمليات فتوسنتز و كيموسنتز مييردازيهم •
: Photosynthesis and Chemosynthesis ميباشد انرزى مورد ضرورت خود را مستقيماً از شعاع آفتاب اخذ مينمايد . ماليكول هاى كلورفيل و قدرت و نيروى شعاع آقتاب را جذب و هايدروجن را از آب نيز دفع نموده كه اين هايدروجن را به كاربن داى اكسايد كه نباتات به آن

ضرورت دارند انتقال داده و بالاخره كاربن داى اكسايد و آب توسط انرثى اشعه آفتاب در موجوديت كلروفيل منتج به كاربوهايدريت ها و اكسيجن ميشود . اين عمليه كه نباتات از مواد خام (آب و كاربن داى اكسايد) توسط انرزى اشعه آقتاب به كمك كلروفيل مواد قندى ميسازد فتوسنتز ياد مينمايند .
يك تعداد بسيار كم باكتريا داراى (Pigments) بوده كه مانند نباتات سبز قدرت تركيب نمودن مواد را
داشته و براى خود غذا ساخته ميتوانند اما باكتريائى كه داراى پگمنت ها نميباشند توسط اكسيديشن مواد كيمياوى انرزى مورد ضرورت خود را حاصل و از آن استفاده مينمايند ـ اين قسم باكتريا كيموسنتيك
. بوده بطوريكه فوقاً تذكر داديم انرزى را توسط اكسيديشن مواد كيمياوى حاصل ميدارند (Chemosynthec)
تمام تعاملاتى كه در آنما انرزى توليد ميگَردد . بنام تنفس Respiration ياد ميگَدد. . 41 / IV)

تنفس بـــــاكتر يا (Respiration)

معنى لغوى Respiration تنفس است اما معنى علمى آن عبارت از تعامل كيمياوى است كه در حجره زنده
صورت گرفته و در نتيجه انرزى حاصل ميگردد . نام ديگر تنفس ، بيولوزيكى اكسيديشن (Biological
. ميباشد به معنى اينكه مواد حجروى همراى اكسيجن تر كيب و از آن انرزى آزاد ميشود (oxidation
اشكال مختلف اكسيديشن موجود ميباشد كه مهمترين و معمول ترين آنها در مايكروارگانيزم ها رخ ميدهد
همانا » Dehydrogenation « است يعنى از يیى ماده ای كه هايدروجن داشته باشد توسط تعاملات كيمياوى اگر هايدروجن آن كشيده شود طور مثال گلوكوزيكه توسط عمليه اكسيديشن از كاربوهايدريت مواد حجروى حاصل ميگَردد داراى هايدروجن بوده و بنام دهنده هايدروجن (Hydrogen donor) ياد ميشود . انزايم دى هايدروجنز باعث از دست دادن هايدروجن (Hydrogen donor) كرديده كه اين هايدروجن توسط انزايم موصوف اخذ و به نوبه خود به ماده ديگرى كه گيرنده هايدروجن (Hydrogen accepter (ياد ميگَردد داده ميشود . هايدروجن را كه اخذ نموده به گيرنده اى ديگَر داده و به همين ترتيب به گيرنده هاى ديگر تسلم داده ميشود تا به گيرندهٔ آخرى برسد . در اثناى دادن هايدروجن انتقال الكترون ها نيز صورت گرفته كه در نتيجه
انرزى آزاد و مورد استعمال قرار ميگيرد .

تنفس هوائى و غير هوائى :

ميدانيه كه يك مقدار معين انرزى براى حيات و تكثر ضرورى ميياشد ، قراريكه مشاهده نموديهانرزیى توسط يك سلسله تعاملات منلق كيمياوى در حجره ذريعه (Biological Oxidation) توليد ميكردد . اين موضوع ما را به يك حقيقت عجيبى مقابل ميسازد لذا ميتوان باكتريا را از حيث تنفس به دو دسته بزرگ تقسيهـ نمود :

ا- ا- باكترياى هوازى (Aerobes)

در كروپ اول تمام باكتريائى كه در موجوديت اكسيجن هوا تنفس مينمايد شامل ميشود به معنى اينكه اكسيجن

باكتريائى كه در گروپ دوم شامل اند در عدم هوجوديت هوا به سر ميبرند يعنى در حقيقت اكسيجن هوا
برايشان مانند زهر ميباشد . اين نوع باكتريا را غير هوازى (Anaerobes) مينامند .
از نتطه نظر رابطه باكتريا با ماليكول هاى اكسيجن هوا ميتوان آنها را به كلاس هاى زير زير تقسيمه نمود :

1. Obligat aerobes) : اين باكتريا به مقلار زياد اكسيجن هوا ضرورت دارد زيرا غير از اكسيجن

ماليكول هوا كدام ماده ديگرى را براى تنفس استعمال كرده نميتوانند مثل بسيلى تشكيل دهنده سيور ،
ديفيتر باسيلوس و كالرا ، سپاير ليم وغيره .
r. Facultativ) اين قسم باكتريا بنام باكترياى اختيارى ياد كرديده اند يعنى ميتوانند در موجوديت و عدم موجوديت اكسيجن هوا زندگى نمايند بتضى از اينها در هواى كه داراى مقدار اكسيجن كمتر باشد زندكى مينمايند يغنى نوع باكتريا بنام Micro aerophilic ياد ميكردد . در اين جمله باكترياى كه باعث اكت توليد
「. Obligate anaerobes) : اين نوع باكتريا در عدم موجوديت هوا زندگى مينمايند يعنى در موجوديت هوا قطاً زنده گى كرده نميتوانند مثال اينها عبارت از بسيلوس تيتانوس ، سياسرونيت سفلس ، بليس توليد كنده سيور Clostridium و غيره.

باكتريائى غير هوازى انرثى مورد ضرورت خود را در دوران عمليه تخمر `Fermentation اخذ مينمايد .
يعنى در دوران عمليه تخمر اكسيجن مورد ضرور ت خود را الخذ و كاربن داى اكسايد آزاد مينمايد .

[^11]
ترميهر و ساختّن پروتوپلازم :

بايد باكتريا قدرت ترميم و تركيب نمودن پروتين ها ، كاربوهايدريت ها و شحميات را كه در ساختن پروتوپازم سمهم بارز دارند داشته باشند اما پيحָيده گى اين مواد خام كه توسط باكتريا جهت تركيب نمودن پروتوپلازم آنها را استعمال مينمايند مربوط جنس باكتريا ميباشد .
مثلاً بسيارى باكتريا انزايهم Protase كه بالاى مواد پروتينى تاثير ميكند نداشته عوض اينكه مواد پروتينى مغلق را استعمال نمايند مواد پروتينى ساده نايتروجن دار را از محيطى كه در آن زيست مينمايند اخذ و از آنها پروتين ميسازند همچنان بسيارى باكتريا انزایم Lipase را كه بالاى مواد شحمى تاثير دارد نداشته و از مواد كاربوهايدريتى . شحميات ساخته نميتوانند

برخالف باكترياى هوازى قدرت فوق العاده جهت ساختن و تركيب نمودن مواد را دارا ميباشد ـ از جانب ديگر باكترياى یرازيتى (غير هوازى) در لابراتوار بدون موجوديت مواد عضوى مغلق و پیچیيده مانند انساج و خون زرع نميگردد لذا اينها قدرت ساختن و تركيب نمودن مواد را كه براى پروتوپلازم ضرورى ميباشند ندارند .

ساختمان كيمياوى حجرهُ باكترى ها

ساختمان كيمياوى باكتريا از جهات مختلف حايز اهميت است . در تر كيب قسمت هاى سطحى اغلب باكترى هاى موادى با خاصيت انتى جنتيك موجود است ـ اگر اين قسمت را مجزا و تصفيه كنيه و به حيوانى ترزيق نمائيم انتى بادى ها ايجاد ميشود كه با انتى ثن هاى مربوط واكنش هاى مختلف نظير آَكلوتينيشن (Agglutination) ، پريسيتاشن Precitation و غيره را بوجود ميآورد .
برخى از مواد آنتى ثنى كه در كپسول يا ساير قسمت هاى سطحى باكتريا ها موجود اند از جهت تفكيى سيرولوزيكى حايز اهميت ميباشد . به علاوه با استفاده از خاصيت انتى ثنى باكتريا واكسين هاى را تهيه نموده اند كه از اين واكسين ها براى پيشگيرى از امراض باكتريائى استفاده ميشود و در اين زمينه پيشرفت هاى زيادى حاصل شده است . با اين كشف كه آنتى بيوتيكى هاى مختلف بتواند از بيوسنتز ساختمان كيمياوى جدار حجره جلوگيرى كنند ساختمان كيمياوى باكترى تقريباً مشابه به ساير حجرات زنده است است .
فلمذا بر حسب نوع زندگى ، تركيب محيط اطراف و نيز عمر باكترى تفاوت هاى ملاحظه ميشود و مواد
متشكله كيمياوى در ساختمان حجره باكتريا از حيث فيصدى مجود ميباشد متذكر ميشويم :
ا- آب Va-^D فيصد نظر به وزن مجموعى باكتريا .

ץ- كاربوهايدريت •ץ- • ا فيصد (مانند نشايسته حيوانى و نباتى و قند هاى ساده) . ץץ- شحميات ץ-ا فيصد ('Mycobacterium tuber culesis) كه عامل مرض سل ميباشد از حيث وزن دارای • \& \% شحم ميباشد (مانند موم ، شحم و فاسفوليبيد ها ه) . ه- هـ ويتامين ها : مواد ملونه و آيون هاى مختلف غيا غير عضوى . ؟- انزايم كه مجموعاً از مواد پروتينى و يا اتحاد پروتين همراى ديگَر مواد مشتق گرديده اند . الف - آب :

مقدار آب موجود در باكتريا (مانند ساير موجودات زنده) بسيار زياد است ومعمولاً (•ND-V فيصد) وزن
باكتريا زنده را آب تشكيل ميدهد . اين آب به دو صورت آزاد و بسته مشاهده ميشود .

قسمت اعظم آنرا آب مسدود تشكيل ميدهد .

آب مسدود يا آب بسته بر خلاف آب آزاد به عنوان حلال عمل نكرده و در پیيده ای اسموزس نيز دخالت نميكند . تصور ميشود كه اين آب از تغير شكل پروتين هاى سيور در مقابل حرارت جلوگيرى ميكند و شايد مقاومت

فوق العاده كه سيور را در مقابل حرارت نشان ميدهد به همين علت باشد .
آب آزاد در ساختمان پروتوپاست باكترى ها دخالت ميكند ونيز برخى از مواد تشكيل دهنده واكيول ها را به
صورت قابل حل در آورده و آنمها را به حالت زل (Gel) نگَهميدارد ـ در ساختمان مواد لزجى كه اغلباً اطراف باكتريا را مييوشاند و نيز در ساختمان كپسول باكتريا ها فراوان است .
ب- مواد معدنى :

با در نظر گرفتن خاكستر باكتريا ميتوانيهم مقدار مواد معدنى موجود در باكترى را تخمين بزنيهـ .اين مواد به طور
r) متوسط • ا فيصد از وزن خشى باكترى را تشكيل ميدهد ولى بر حسب محيطى كه باكترى در آن رشد نموده از الى ه 1 \%) تغير ميكند و كاه به •ب فيصد نيز ميرسد .

مواد معدنى موجود در باكتريا ها را ميتوان نظر به اهميت و مقدار آن دسته بندى كرد :
دسته ای از مواد معدنى كه به مقدار بيشترى در تر كيب مواد ساختمانى باكتريا يافت ميشوند : فاسفور : فاسفور يكى از مواد معدنى اساس است كه احتمالاً به صورت P2 فاسفورس r-r٪٪ از وزن خشك باكترى را تشكيل ميدهد .

فاسفور به صورت فاسفات معدنى براى تغذيه ضرورى است و نقش نمك تاميونه را بازى ميكند به صورت گلستروفاسفات ، فسفوليييد ، استرفسفوريی و تركيبات ديگر در سيستم هاى انزايمى موجود است . فاسفور در سيتوپالاست و مواد هسته ای موجود و در دانه هاى ميتاكروماتين به صورت ميتافاسفايت ديده ميشود . سلفر : در تمام باكتريا وجود دارد و مقدار آن بر حسب So ${ }^{\text {آ }}$ بيان ميشود . اين ماده تقريباً (ه-A٪) از وزن خشك باكترى را تشكيل ميدهد و به صورت سولفات هاى معدنى با امينواسيد ها از قبيل سيستين (Cysteine)
 (بيوتين) (Blotine (Methlonine) (llV/) (. ساده در نزد باكترى ها سلفر دار موجود ميباشد
 اساسى هستند و در ساختمان كلوسيد ها و پروتيد ها وارد ميشوند . دسته از مواد معدنى لازم كه به مقدار كمترى در ساختمان كيمياوى باكترياى يافت ميثوند عبار تند از :

پوتاشيهم : به مقدار بسيار كم مورد نياز باكترى است و مسئول دخالت در پديله هاى نفوذ پذيرى ، بخصوص در
سطح غشاى سلولى باكتريا را به عمهده دارد .
ميگّنيزيم : كه براى فعاليت بعضى از انزايم ها و توليد پيگمت ها در بعضى از باكترياى ضرورى است . كلسيهم : در بعضى از سيستم هاى انزايمى دخالت ميكنند و جهت تشكيل برخى از سموم مانند سم ديفترى
ضرورى است .

اليگوالمنت ها Oligoelements : اين دسته از مواد به مقدار بى نهايت جزئى در باكترى موجود بوده وبه
عنوان كوانزايم, در ميتابوليزم باكترياى ذخيره ميشود همچحنين براى توليد پگَمت ،زهرى به انتى بيوتيك مورد نياز اند. آهن : كه در تنفس باكترياى به صورت سيتوكر يا مشتقات آهن دار ديگر دخالت ميكند . اين ماده در ترشح پگمنت نيز دخالت دارد . در برخى از باكتريا كه در آبهاى آهن دار زنده گى ميكنند آهن را به صورت غلافى است از هايدوكسايد آهن كلوئيدى را در اطراف باكتريا مشاهده نموده ميتوانيه . جست (Zn) : جست در ميتابوليزم باكترى نقش مهمى دارد .

كوبالت : كه در سنتز ويتامين B12 توسط برخى از باكترى هاى نظير اشرشياكلى و باسيلوس سوبتيليس
. داراى نتش مرمى است (B.Subtlls)

ج- امينواسيد ها :
تركيب امينواسيدهاى باكتريا مشابه امينواسيد ها در موجودات عالى است . تجمع امينو اسيد در باكتريا براى
تشكيل زنجير پولى ييتيدها و در نتيجه توليد صفات اختصاصى لازمى است .
نوع امينواسيد بر حسب انواع باكترى متغير ميباشد . تر كيب برخى از اسيد هاى آمينه را به كمى كروماتوگرافى
روشن كرده اند . از جمله اسيد هاى داى آمينوكاربو كسيل دارى فرمول زير هستند .

مهمترين امينواسيد اين دسته داى آمينويمليك ميباشد كه دارائى فرمول زير ميباشد :
$\mathrm{R}=\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$
اين امينو اسيد در جدار باكترى فراوان است و بر طبق مطالعات Work كه در سال 1901 انجام گرفته در
تركيب پولى پيتيدى هاى جدار خارجى باكترى هاى از قبيل باسيل دو كخ و باسيل ديفترى موجود است . وزن ماليكول پولى پتيدها تقريباً ... 10 ميباشد . كپسول برخى از باكتريا مانند باكترى مولد سياه زخم

يولى سكر ايدى است . كسيول بروسلاملى تينيس لييبدى يا ليييدويروتيدى ميباشد) .

برخى از باكترياهاى پتيد هاى با خواص سمى يا انتى بيوتيكى توليد ميكنند و يا پيتت هاى نظير گَلوتانول . را بوجود ميآورند (Glutathanol)

ساختمان هلويروتين ها در انواعى مختلف باكتريا متفاوت است و هنوز هم خواص اين مواد بصورت درست و كاملاً شناخته نشده اند . بعضى از هلوپروتين ها اهميت زياد ندارند و در باكترياى متعددى آنها را مى يابيمه ، برخى
ديگُر مسئول مشخصات كم و بيش معينى هستند .

ا- بعضى از هلويروتين ها مسئول خصوصيات موجود در انواعى زياد از باكترى هاى كه در خواص متعدد و
مشتر ك اند معينى هستند .
r- برخى از هلويروتين ها در فلاجل باكتريا موجود اند و انتى ثن هاى فلاجلى ای يا انتى ثن هاى H را بوجود ميآورند .

ケ- برخى از هلويروتين ها در انزايم باكتريا موجود اند .
 (128 , 129 / VI) . برخى از هلويروتين ها سموم باكترى را تشكيل ميدهند
 د- ويتامين ها :

باكترياى متعددى قادر اند با استفاده از تركيبات وجود در محيط كشت (بطريق Invivo) يا به مصرف موجود در محيط اطراف خود ويتامين ها شناخته شده را توليد كنند . از جمله باكترى هاى سايروفيت روده از اين جهت قوى هستند و بطور موثر در استفاده اين ويتامين برايشان در
حكمم فاكتور نمو است .

تهييه برخى از ويتامين ها توسط باكترياى امروزه جنبه صنعتى يافته است . ويتامين זß
است توسط گياهان عالى ساخته نميشود و منحصراً توسط موجودات ذره بينى بويزه باكترى هاى موجود در فلور روده
تهيه ميشود .
نه تنها Streptomyces griseus و استریتومايسيس گرسيوس با سيلوس سوبتيليس (B.Subtlls) ميكوباكتريوم سگَاتيس (Myco Smegmatis) باكترى هاى ضعيف مختلف و برخى از لاكتو باسيلها نيز اين ويتامين را به ميزان زيادى تهيه ميكند . فيتول كول (Phitiocol) با پيگمنت زرد توليد شده توسط BK (باكترى مولد سل) داراى برخى فعاليت هاى مربوط به ويتامين k است .
برخى باكتريا هاى روده ای از قبيل اسريتويشياكلى ، لاكتوباسيلوس ، بيغيدوس (Lcat.B.Bifldus)
واسترپتوكوكوس فكاليس (Stref Facalls) نيز ويتامين K را توليد ميكند . (() الي /)

فصل سوم

نامتغارى و طبقه بندى باكتريا

جون ساختمان باكتريا بسيار ساده است ، صفات غير مورفولوزيكى نيز در تشخيص باكتريا استعمال شده
 انواع يرازيتى و سايروفيتى كه كوانزام مخصوص را مانند ويتامين ها و امينواسيد ها استعاي استعال مينمايند ، داراءى ارزش تشخيصى ميباشد . محصولات نمائى تنفس (مانند كازات و تيزاب ها) در تشخيص بیضى انواع استعمال شده ميتواند ، درجه حرارات PH و ضرورت اكسيجن و طرز العمل تلوين نيز در تشخيص انواع باكتريا كمك ميكند . با وصف اينكه بطور عموم اين موجودات كوچِك ذره بينى به اساس شكل ، اندازه ه ، رنگَ ، حركت و ساير صفات ديگًر طبقه بندى شده اند نام باكتريا از دو كلمه يونانى يا لاتينى تشكيل گَدريده است كه جنس و عامل مر مرض از آن افاده شده ، اگر طبقه بندى باكتريا در نظر گرفته شود تمام باكتريا تحت يى گروب واحد Schizomyceles مطالعه

:Class Schizomyceles

بطور عموم باكتريا ها يك سلولى اند و توسط عمليةً Tran severe fission انتسام ميكنند به استثناى يی گروب انواعى ديگر آن فاقد كلوروفيل حقيقى اند . سلول ها داراى اشكال ، كروى ، فنرى ، استوانه ای و رشته اى بوده و تشكيل زنجيرى را مينمايند و يا به اشكال و ساختمان هاى مكعبى تجمع ميكند و شامل شش آردر ذيل
(Order Eubucteriales) باكتريا حقيقى (Y)
r-
ץ-
-

(145,160/XV) (Order Rickettsiales) (
باكتر ياى حقيقي (Order Eubucteriales)
تعداد زياد باكتريا شامل اين آردر بوده و داراى اهميت اقتصادى ميباشند . باكترياى اين آردر از لحاظ
مارفولوزى يكى حالت خاص داشته داراى اشكال ساده ، مدور ، ميله مانند و يا فنرى ميباشند و از نگاه فيزيولوزى

1. Bacilaceae
2. Pseudomonadaceae
3. Azotobacteriaceae
4. Miciocusceae
5. Neiseriaceae
6. Lactobatteriaceae
7. Corynebacteriaceae
8. Entero bacteriaceae
9. Parrobacteriaceae
10. Rhizobiaceae
11. Nitrobacteriaceae
12. Achiomobacteriaceae
13. Hemphilaceae (ا- فاميل(Bacilaceae) :
متشكل از باكترياى فنرى اند كه استعداد و تشكيل (Endo spore) , را دارا است ـ بضى از انواع آن با
داشتن فلاحيل هاى Peritichous قادر به حركت نيز ميباشند . سيور هايشان ملور و استوانه اي بوده و در بعضى حالات حجرة Sporongiume تورم و آماس نموده ، شكل Spindle و يا استوانه به خود ميكيرد . جنس هاى

ميبياشد كه قادر به تنفس در هواى آزاد اند ، بضى انواع سبب توليد امراض ميكَردند مثلاً باكترياى Bacillas an thracis جنس Clostridium توليد كنده سيور هاى ميله مانند بوده (و Anaerobic) ميباشد . بيضى انواعى آن حجراتى را توليد نموده كه هنگام تشكيل Endospore در قسمت مركزى تور مارم ميكند . تعاداد زياد آن فعاليت هاى آى زيادى را در توليد تركيبات كاربوهايدريت ها ، اسيد ها ، كازات از خود از نشان ميدهند ـ با بغضى انواع آن مواد زهرى توليد نموده كه سبب امراض حيوانى و انسانى از قبيل Tetanus , Opdima و غيره ميكردد. .

: Pseudomonadaceae

باكترياى شامل اين فاميل ساختمان چوبك مانند داشته ، مستقيم و يا تاب خورده ميباشند و توسط فلاجيل هاى قطبى Polar حركت كرده ، قادر به نمو نمييباشد . اين فاميل داراى چندين جنس ميباشد كه جنس هاى مشهور آنرا مورد مطالهd قرار ميدهيه : (Pseudomonas اكثراً در آب و خاك حيات بسر ميبرند . در جسم نباتات باعث توليد امراض ميگَردند ، بسيارى از انواع آن مواد رنگَه سبز ، زرد ، آبى و نصوارى را را توليد مينمايند . جنس Axnthomonas : تقريباً تمام انواع آن باعث توليد امراض در نباتات ميكردند . نسبت فلاجيل (b
واحد قطبى و داشتن يكَمنت زرد رنگى غير قابل نفوذ و غير منحل در آب بوده و با جنس اوولى فرق ميكند .
 الى سه فلاجيل قطبى تفريق ميشوند • بضضى انواع آن امراض كشنده حيوانى و انسانى را سبان مبر ميشوند .

مهمترين نوع آن كه باعث مرض كولرا در انسان ها ميشود عبارت از 'Vibriocholerae ميباشد . جنس Spirillium جر اين جنس انواعى جسيم و بزركترى شامل اند ـ حجرات شان متحرى بوده و (d حركت آن توسط دسته ای فلاجيل هاى قطبى صورت ميگيرد ـ ا اكثر انواع آن بصورت آزاد در آب حيات بسر
ميبرند .

[^12]
بـ فاميل Azotobacteriaceae

اين فاميل داراى يك جنس واحد Azotobacter ميباشد . حجرات شان ميله مانند ، كروى و بعضاً شبيه حجرات Yeast (خمير مايه) است . اينها داراى فلاجيل Peritrichous اند . حجرات شان تنها در صورت موجوديت اكسيجن قادر به نمو ميباشند .
: Micrococeae
اشكال شامل اين فاميل از حجرات كروى به شكل كتله هاى غير منظمر و يا به شكل كتلئه منظم مكعبى و يا بعضاً Tetrad اند مگَر هيچگًاه به شكل زنجيرى ديده نشده اند .
© © فاميل Neisserilaceae:
تمام انواع در اين فاميل پرازيت هاى جسم انسانها و حيوانات ميباشند . Neisseria جنس اين فاميل بوده
باعث توليد امراض ميگردد . (س / / \& ه)

!- Lactobacteriaceae فاميل

جنس هاى اين فاميل از لحاظ مارفولوزى اختالف زياد دارند ـ اشكال Cocci تا اشكال ميله اى و طويل در
آن ديده شده است . در محيط هاى مساعد توليد افرازات كاربوهايدريتى و تشكيل اسيد ها را ميكنند . اينها غير
متحر ك بوده سيور ها را توليد نميكند ـ از لحاظ شكل سلول هاى اين فاميل دو گروپ تقسيم ميشوند :
الف : Streptococcaceae
Lacto bacillaceae : ب
مشخصات گروپٍ اولى عبارت از داشتن حجرات كروى به شكل جوره ای ميباشد و گروپ دوم شامل سه جنس
به نام هاى زير اند :
Diplococcus (a
Streptococcus (b
Leuconstococcus (c
جنس اولى و دومى پرازيت هاى حيوانى و انسانى بوده و هم Streptococcus בر شير نمو نموده و بيست
و چهار نوع دارد ، از جمله مهمترين انواع Streptococcus Pyogenes عامل بعضى امراض محسوب شده و نوع ديگر آن Strepto coccus Lactic كه در تخمر شير و توليد پنير اهميت بسزاى دارد .

جنس سوم Leuconstococcus چندين نوع محدود داشته و به اثر تخمر قند ها كاربن داى اكسايد را
توليد مينمايد .

گروپ Lactobacilliae داراى هِار جنس بوده كه حجرات شان اكثراً ميله مانند و بضضاً طويل ميباشد. جنس Lactobacillus متشكل از گرويىى است كه داراى انواع زياد بوده و در تخمر محلول هاى قندى كهي كه در اثر آن Lactic acid توليد ميگَردد سهمه دارند . بغضى از انواع آنتا در صنعت پنير سازى مهرم ميباشند . يكى عده انواعى اين جنس انزايهم Cado Lase را توليد ميكند . جنس Propionibacterium از جنس هاى قبلى فرق

:Coryne bacteriaceae فاميل -

اين فاميل داراى دو جنس غير متحر ك و يك جنس متحرى دارد ـ ساختمان ميله مانند داشته و بسيارى از آنها چتوجتيك 》 مولد مرض « اند .
برخى انواع آن استوانه بوده و بعضاً تاب خورده ميباشند و ميله هاى غير Genus Corynebucterium
Coryne bacterium متحر كى را تشكيل ميدهند . بسيارى از انواع آن برازيتى اند ـ يكى از انواع آن عبارت از أن از . ميياشد كه سبب مرض ديفترى در انسانها ميگَردد dipthriae
: Enterobacteriaceae فاميل
باكترياى مربوط اين فاميل ميله ماند بوده و فاقد سيور ميباشد . اين فاميل شامل جنس ها و انواع متعدد بوده
كه انواع شان داراى اهميت اقتصادى ميباشند و جنس هاى مشهور شان قرار ذيل است : Eschcrchia) سترا (a

كه جنس اول در امعاى انسان و ديگَر حيوانات زندگّى نموده كه باعث تحمض قند Lactose كرديده و توليد اسيد و كاز را مينمايند . جنس دومى باعث تحمض تكلوكوز مثالاً توليد اسيد را مينمايد ولى كاز توليد نميكند .
: Achrombacterlaceae
اين فاميل داراى سه جنس مهم زير ميباشد :
(a
پرازيتى بوده قدرت تحمض كاربوهايدريت را دارد و از تحمض كاربوهايدريت ها توليد پیَمنت هاى نارنجى ميكند .

(b

(اين جنس قادر به توليد اسيد ها از كاربوهايدريت نبوده ولى در هنگام نمو در شير يك نوع القلى را توليد ميكند و بغضى انواع شان در امعاى حيوانات فقاريه حيات بسر ميبرند . بضى در توليد لبنيات حايز اهميت اند

: Parrobacteriaceae (1) فاميل

باكتريا هاى مربوط اين فاميل يرازيت هاى حيوانات خون كرم اند و اين فاميل داراى جهار جنس مشهور است : (a جنس Pasteurella كه عامل مرض در انسانهيا ميكردد .
(به شه : Malleomyles (b
Brucella داراى حجرات طويل بوده باعث تب نوبتى در اسپ هاى ميشود كه بنام : Brucella (c . ياد ميگردد metitelsis
(34 / XIV) . اكثراً توليد يرازيت هاى داخل دهن محسوب ميشوند : Fusobacteriaium (d : Hemophileceae 11 - فاميل
شامل شهلار جنس بوده ، برازيتى اند . جنس Aerobic غير متحرك بوده يك نوع مهم آن Hemophilus in fluenzea ميباشد كه معمولاً با انتانات مخصوص تنفس در انسان ييدا ميشود . جنس Noguchia حجرات متحر د داشته كه به شكل زنجير يا جوره ای به مشاهده ميرسد ، جنس Moraxella متحرى بوده بغضى انواع شان داراى فلاجيل هاى قطبى ميباشد . نوع Noguchiagranulosis باعث مرض Trachoma : Rhizobiaceae بآ فاميل
جنس مهر اين فاميل Rhizobium ميباشد ، اين جنس شامل انواعى است كه در ريشه نباتات خاندان باقلا (Nodules) را ميكند . در اثناى نمو سبب نصب نايتروجن هوا در نباتات ميكَردند . اين باكتريا فاقد سيور بوده معمولاً داراك يك يا حي حند عدد فاجلاجيل ميياشند . در موجوديت هوا به خوبى نمو ميكنند . جنس Agrobacterium شامل انواع مخصوص است كه سبب توليد زخم در روى جسم نبات ميكَردند. جنس Chiomobacterium انواع مربوط به اين جنس در تحت شرايط معينى توليد هِحمنت بنفش را
ميكند و باعث توليد زخهم در روى جسم نباتات ميكردند .

باكترياى شامل اين فاميل در آب و خاك بيشتر ديده ميشوند ، اينها قادر به استعمال كاربن داى اكسايد هوا و توليد مركبات عضوى ميباشند به همين واسطه اينها Autotrophic كفته ميتوانيهم ، اين باكتريا انرزى مورد ضرورت خود را از اكسيديشن عناصر مخصوص و يا مركبات غير عضوى بدست ميآورند . تمام اركانيسم هاى كه به اين فاميل شامل اند قادر به اكسيدايز امونيا به نايترايت و يا اكسيدايز نايترايت به نايتريت ميباشند . جنس هاى مربوط به اين فاميل عبارتند از : Nitrosococeas (a

Nitrobacter (b
اركانيزم هاى جنسىDragenomonas قادر به اوكسيديشن هايدروجن بوده اركانيزم هاى مربوط اين جنس Thiobocillus سلفر Thiosu Fat را او كسيدايز مينمايد .

: Order Actinomycetales

اين آردر شامل باكترياى است كه شباهت با Fungi داشته و بين پوينکى ها و باكترياى حقيقى داراى موقعيت بين البينى است ، حجرات شان طويل و تقريباً استوانه ای ميباشد . در بعضى از انواع و جنس ها حجرات شكل طويل و منشعب را گرفته و تشكيل يكى كتله از رشته هاى منشعب را مينمايند كه مشابهت به Mycellium فنجى ها

دارند و داراى سه فاميل عمله و مهمه ميباشند :
Mycobacteriaceae فاميل (a
Actinomycetaceae فاميل b
Streptomycetaceae (c
در فاميل هاى Streptomycetaceae و Mycobateriaceae توليد مثل توسط انشقاق قطعات
Streptomyces . صورت ميگيرد . اكثراً در خاك زندگى ميكنند Budding جوانه زدن Fragmemtation باعث مرض خراشيدگى Scrabs كحالو و بعضى انواعى شان باعث بوى و تعفن در حيوانات و انسان
ميگَردند .

باعت مرض توبر كلوز (سل) درانسان ،حيوانات وديگريرندگان Mycobacterium Tubercolosis

Streptomycin انتى بيوتيك هاى مُمر مانند سترتبوماسين Stretomyces مخصوصاً Actinomycetes

انتى بيوتيك ها توليد ميشود. (س / / $/$ /

(- فاميل (Mycobacteriaceae) :

اين فاميل داراى يک جنيس واحد Mycobacterium ميباشند . حجرات شان معمولاً ساختمان ميله مانند داشته كه به مشكل قابليت رنگَ پذيرى را دارند ، ولى در صورتيكه رنگَ شوند ، به سبب موجوديت اسيد رنگَ آنها زايل نميشود ـ و نظر به همين خصوصيت از باكترياى ديگر فرق ميشوند . يكى از انواع آن Mycobacterium tuberclosis ميباشد كه عامل مرض توبر كلوز در انسان ها و حيوانات ميگَردد ، براى آشنائى بيشتر مرض توبر كلوز (سل) را مورد مطالعه قرار ميدهيمم:

توبر كلوز (Tuberculosis) :
عامل مرض Mycobacterium tuberclosis ميباشد ، انواع مختلف دارد اما دو نوع آن انسان
را مصاب ميسازد ، نوع انسانى و نوع بقرى .

سل يا توبر كلوز ناشى از يیى مايكوباكترى به اسم مايكوباكتريوم توبر كلوزيس ميباشد ـ باكترى ممكن است هر قسمتى از بدن را مورد حمله قرار دهد ولى معمولاً شش وساير محل بـن درگير ميباشد ، سل از طريق هوا از يك شخص به شخص ديگُر انتقال مينمايد ـ وقتيكه شخص مبتلا به توبر كلوز شُشُ يا حلق مصاب شود ، سرفه ، عطسه و يا حتى خنده بلند ميكند ميكروب در هوا پخش ميشود و تنفس در مجاورت اين شخص احتمال آلوده گى اشخاص مجاور را بالا ميبرد ، ميكروب از طريق استنشاق وارد بلن ميشود ـ ميكروب سل گاهى اوقات بلافاصله باعث مريضى نميشود و سال ها به حالت مخفى در بدن باقى ميماند بدون آن كه منجر به مرض شود . در شرايط پائين آمدن

[^13]. سيستم معافيت بدن مخصوصاً همراى مريضى هاى ديگر ميكروب مجدداً فعال گشته و ايجاد مريضى ميكند افراديكه بيش از همه در خطر مبتلا هستند كسانى ميباشند كه سيستم معافيتى آنها مشكلاتى دارد ـ افراد مبتلا به اشكالات سيستم معافيتى مواجه ميباشند ، تقريباً تمام كودكان در هفته هاى اول بعد از توليد بايد در مقابل اين ميكروب ها واكسين بنام (B.C.G. () مصونيت كامل در مقابل توبر كلوز ايجاد نميكند ـ اما از مريضى هاى كشنده توبر كلوزى مثل Mennijitis جلوگيرى ميكند . بايد تذكر داد كه مريض سل كاملاً قابل درمان و تداوى است ، توبر كلوز ميتواند هر قسمتى از بدن را مصاب كند ، عمدتاً بالاى شش ها و غدوات لنفاوى اثر ميگذارند سرفه شايعترين علامت اين مريضى است كه اغلب با بلغم سينه همراه است و گاهى ممكن است خونى باشد . درد ناحيه سينه ، كم اشتهائى ، كاهش وزن ، تب و عرق از علايم ديگً سل ميباشد ، هنگَامى كه اين ميكروب بالاى غدوات لمفاوى اثر بگذارد ، غده هاى در ناحيه گردن زير بغل و كشاله ران ظاهر ميشود ، تشخيص مرض معمولاً از عكس بردارى از قفسه سينه و آزمايش از نمونه بلغم ميباشد . تداوى مرض يا تجويز دارور و خاص براى مدت 9 الى 9 ماه ميباشد ، رزيم غذائى براى مريضان توصيه

نميشود ولى تغذيه خوب و مناسب به صحت يابى مريض كمك ميكند ، ميكروب سل نوعى از مايكوباكتريوم است. (باكتر يهاى مايكوباكتريوم هوازى بوده بدون سپور ، بى حركت ، و چوبى شكل هستند . اكثر انواعى شان پاتوجنيتيك اند و به علت مقاوم بودن در برابر اسيد هاى تفكيك داده ميشود ، در حاليكه يك عده از انواع شان ساپپوفيت گرم مثبت بوده انواعى زياد از مايكوباكتريوم در خاك به سر ميبرند . انواع پاتوجنيك شان مانند مايكوباكتريوم توبر كلوزس كه عامل (سل) و مايكوباكتريوم لييرا عامل جذام اند) . بطور نمونه از دو نوع توبكلوز نام آور ميشويهم :

الف : توبر كلوز پوستى : اين مريضى در افراديكه با حيوانات ، ضمايه آنها و با محصولات آنها سروكار دارند ديده ميشود. شروع مريضى به صورت برجستگيیاى سخت و خشك شاخى شكل در نواحى مخصوص بدن از جمله پشت دست ها يا پاه ها ، اطراف انگشتان ، ناحيه اطراف ناخن ها و حتى در مخاط دهن هم ديده ميشود . اين برجستگيها
مشابه زخ هستند و اطر اف آن قرمز و متورم كه بعد از ماها رنگَ آن تدريجاً بنفش رنگَ ميشود . ب : توبر كلوز ريوى : اين نوع توبر كلوز خطرناك ترين نوع است ، در سابق به علت كمبود امكانات حفظ الصحه و تداوى اين نوع فراوان تر بود ولى امروزه خوشبختانه كاهش يافته است ، در مراحل اوليه مريض حالت مخفى و مرموز را دارد كه به كمك اشعه ايكس قابل رويت و تتخيص است . با پشرفت مريضى علايمى مانند سرفه ، تب ، بلغم

خون دار ديده ميشود ، با ييشرفت بيمارى ممكن است اين مريضى به ساير اعضا نيز انتقال يابد ، كم شدن وزن ، عرق كردن هنگام شب ، سينه درد از عايهم ديگُر اين مريضى است .

: Actinomycetaceae

اركانيزم هاى اين فاميل حجرات طويل و خيلى منشعب شبيه مايسليم پوپنک ها توليد ميكنند. گرچه رشته هاى مذكور مشابهت زياد با مايسليم دارند ولى بيشتر آنها استوانه ای اند كه پس از يیى مدت كوتاه به قطعات جدا شده ، ساختمان ميله مانند و يا كروى را بخود ميگيرند . وظيفه تشكيل سپور ها را اجرا ميكند و يا اينكه به سيور ها تبديل ميشوند . در بعضى حالات رشته هاى Mycellium تشكيل جوانه ای را ميكند كه منحيث سيور ها اجراى وظيفه مينمايند . اين فاميل دو جنس داشته يكى آن Actinomyces و ديگران Nocardia ميباشند . جنس اولى در صورت عدم موجوديت اكسيجن و جنس دومى در حالى نمو ميكند كه (O) وجود داشته باشد . مهمترين نوع Actinomyces عبارت از Actinomyces bovis ميباشد كه سبب ضخيم شدن
الاشه در كله گاو ها ميگردد .

س- فاميل (Streptomycetaceae) :
اركانيزم هاى كه مربوط به اين فاميل اند كتله هاى از رشته هاى خيلى منشعب را توليد ميكند كه معمولاً

> داراى دو شكل است :

يكى آن مايسليم هاى است كه بالاى مواد غذائى (مايسليم سبز يها) نمو ميكند ؛ و خيلى منشعب اند . ولى
هيحچگاه به قطعات تقسيه نميشوند .
در جنيس (Streptomyces)يى قسمت از رشته ها در هوا نمو ميكند و مايسليه هوايى را ميسازند . بعد به سيور ها انكشاف ميكند ، اين سيور هاى هوايى معمولاً به شكل زنجير ها توليد ميشوند . يكنوع آن از لحاظ توليد (Antibiotic) داراى اهميت زياد ميباشد به طور مثال (Streptomycin) كه

از (Streptomyces griseus) ساخته ميشود .
در جنيس (Micromospore) مايسليم هوايى تشكيل نميشود . در عوض آن رشته هاى كوتاه حاوى
سيور ها را در اطراف خويش توليد ميكنند كه هر يک از اين رشته ها در قسمت انتهائى خويش داراى يک سيور واحد ($124,140 / X)$) (Conidium) () (

: Order Spharochaetales

سلول هاى اين باكتريا ها بسيار طويل ، فنرى و فاقد جدار هاى سخت بوده و عموماً حركى ميباشند . اجزاى كوحِى سلولى اينها از باكتريا ديگر متفاوت اند ـ سلول بوسيله يكى جدار نازک كه قسمت خارجى آن بوسيله رشته
 انجام سلول محكم گرديده اند . اين رشته ها داراى تركيبات كيمياوى مشابه فالاجلم باكتريا هاى ديگر بوده و قابل

انقباض ميباشند . انقباض اين رشته باعث حركت و عمل يّيج خوردن سلول ها ميكرَدد. .
باعث مرض يرقان در انسان ميگردد . T.Perterure ، باعث مرض سيفليس Treponema Pallida

 سيفليس T.Perterure در انسان ميشود مورد مطالعه قرار ميدهيم :

سيفليس (T.Perterure) :
عامل مريضى سيفليس Treponemma pallidum است كه به دو شكل ديده ميشود:
ا.
r.

شكل ولادى طفل قبل از تولد به مريضى مصاب ميشود اما در شكل كسبى مرض بعد از تولد انتقال مينمايد .
سيفليس كسبى (Acquired) : سيفليس يك مرض زهروى بوده توسط مقاربت جنسى انتقال مينمايد ،

$$
\begin{aligned}
& \text { داراى سه صفحه است : } \\
& \text { 1. سيفليس ابتدائي } \\
& \text { r.r. سيفليس ثانوى } \\
& \text { 「. }
\end{aligned}
$$

[^14]آفت سيفليس ابتدائى عبارت از يك شانكر' است ، شانكر در ناحيئ كه ابتدا انتان در آن داخل شده تشكيل مينمايد عامل سيفليس جلد سالم را سوراخ كرده و داخل عضويت ميشود بعد از مرور چندين ساعت سپروكيت كه بالاى جلد قرار گرفته بود داخل جلد شده ابتدا به قنات لمفاوى و بعداً داخل اوعيه دموى ميشود ، موجوديت اسيايروكت در خون بنام Spirochetemia ياد ميشود با وجوديكه اسبايروكت ها داخل خون ميباشند كدام

عالايمى نزد مريض به مشاهلده نميرسد .
سيفليس ثانوى ه تا 9 هفته بعد از تشكيل شانكر بميان ميآيد ، در دوره دوم سيفليس در تمام عضويت انتشار ميكند كه در اين موقع اعراض عبارت اند از : درد اعضا و لرزه كه به تعقيب اين اعراض افات متعدد در نواحى مختلف جلد تظاهر ميكند . اين قرحات كه در نواحى مختلف جلد تشكيل ميشود به شكل ماكول ، پاپول يا ماكوپاپول ميباشد . سيفليس دوره سوم در بين سيفليس ثانوى و سيفليس دوره سوم يك صفحه خفا موجود است كه مريض در اين

دوره اعراض مريضى را نشان نداده ، دوام اين مدت اكثر از دو الى •r سال طول ميكشد . سيفليس ولادى : در سيفليس ولادى موقع كه طفل تولد ميشود ، مصاب به مرض ميباشد ـ طفل اكثراً مرض را از مادر ميگيرد . در دو سال اول كه مادر مصاب شده به طفل انتقال مينمايد چونكه بعد از دو سال عامل مرض نزد مادر كم شده و از طرف ديگر سيفليس به دوره سوم داخل ميشود . از اين رو اطفال اين مادران درين موقع به مرض
(268 / IX). مصاب نميشوند

: Order Spirochaetales

باكترياى كه در اين آردر شامل اند داراى مشخصاتى است كه باعث ميشود ، بعضاً با پروتوزوا يكجا مطالعه ميشوند . فرق عمده شان با ساير باكتريا اينست كه حجرات شان داراى قابليت ارتجاعى ميباشد كه به اثر حركات شان در شكل خميدگى بوجود ميآيد . جسامت شان از همديگر فرق دارد ـ اكثر آنها خاصيت رنگَ پذيرى را نداشته به همين سبب مشاهده شان توسط طريقه هاى مخصوص صورت ميگيرد و فاميل عمدئ شان Spirochaetaceae ميباشد.

: Order Chlamydobacteriales

اعضاى اين آردر شامل باكترياى باسيلوس رشتوى و اشكال كروى اشكالى كه در ميان غلاف استوانه اى
پوشيده شده اند ميباشند . اين ها اجسام حيه آبى و ثابت اند .

[^15]هايدرو كسايد آهن سه ولانسه را در دااخل خود ذخيره نموده و باعث

> تشكيل ذخيره آهن در باطالق ميگردند .

هايدروكسايد آهن سه ولانسه را در داخل غلاف خود تشكيل داده و باعث
مسـود شدن نل هاى آب ميگرددد .

: Order Rickettsiales

در سال 9•هام اولين كسى كه اين موجودات را كشف نمود بنام Hwaard Taylor Rickeas بود كه اين موجودات ذره بينى را تحت مايكروسكوب در خون يك شاهين مريض مشاهده كرد ـ اگرچه اين موجودات مانند باكتريا به نظر ميرسد اما وقتيكه آنها را در يك محيط مصنوعى (طوريكه باكتريا را زرع مينمايند) زرع نمود نتيجه . نداد .
 از خون مريض موصوف تغذيه كرده بود بار ديعَر مشاهده نمودند ـ مرتبه سوم اجسام موصوف توسط Prowazek در حاليكه در باره محرقه مطالعه و تحقيقات مينمود در سال الم إم به مشاهده رسيد و از طرف موصوف تأئيد گرديد . در سال ءاوام محقيقين ديگَر مانند Derochu lima به احترام Ricketts , prowazek اين اجسام كوپک ذره بينى را Rickettsia ، Prowazakii ناميد . بايد واضح نمود كه علماى فوق يعنى Prowazekii و هر دو در حاليكه در بارء اين اجسام مشنول مطالعات و تحقيقات بودند در اثر محرقه حيات خود را از دست دادند .

اين اجسام عموماً از باكتريا كوچک تر بوده و توسط مايكروسكوپ الكترونيكى ديده شده ميتواند . اين در داخل حجرات حيوانى نشو و نما نموده و عموماً بنام پرازيت هاى Obligat حجره ياد ميشود لذا در لابراتوار در يكى محيط مصنوعى زرع نميشوند . محيط زرع اين موجودات بايد حتماً انساج حيوانات زنده باشد ـ ميتوان اينها در انساج حجرات حيوانى و يا تخم القاح شده زرع نمود . تخم القاح شده مرغ جهت زرع نمودن اين اجسام كوچك عموميت دارد ـ توسط اين طريقه اينها در خريطه زردى تخمم در داخل حجرات آن نمو كرده و براى مطالعه در لابراتوار آماده ميگَردند. مهمترين ناقلين ركتيسيا ارترويودا ها (شپش ، كيك ، كنه و غيره) بوده كه در اثر گزيدن توسط حشرات
 ميباشند

نظر به داشتن جسامت كوچک و مشكلات زرع نمودن آن ها كه هنوز همم در بارهٔ ساختمان حقيقى و ميتابوليزم اين موجودات معلومات كافى وجود ندارد ، بصورت عموم اين اجسام شكل معينى نداشته اما بعضى داراى شكل ميله ای ميباشند ، كپسول و فلاجيل تا حال ديده نشده حجرات شان مانند حجرات باكتريا به آسانى و خوبى تلوين نگرديده بلكه جهت تلوين نمودن رنگَ هاى مخصوص مانند Gamsas ، Macchiavellos و غيره استعمال ميشود . اين موجودات باعث اكسيديشن پايرويك اسيد گرديده و در صورت استعمال نمودن Sulfonamids نشو و نما آن ها عوض اينكه بطى گَردد و يا توقف نمايد يا سريع ميگردد به تعداد آن ميافزايد ـ از جانب ديگر استعمال نمودن Paraminobenzoic acid باعث توقف نمودن انكشاف آن ها ميگردد . استعمال نمودن (YVQ / / (ب بالاى آن تاثير نموده و فعاليت هاى انزايمى آن ها را متوقف ميسازد Tetracyclines ريكتسيا ها شامل ريكتسيا و كلاميديا ميباشند . اين دسته از ميكروب ها پرازيت هاى داخل سلولى اجبارى هستند كه فقط در داخل سلول ميزبان قادر به توليد مثل ميباشند و از اين لحاظ به ويروس ها شباهت پيدا ميكنند . در حقيقت ريكتسيا ها اندازء كمى بزركتر از بزركترين ويروس ها را دارند . از طرف ديگر از لحاظ صفات شكلى و بيوشيمائى ريكتسيا به باكتريا شباهت داشته و به آنها طبقه بندى ميشوند . در جدول شماره يك خصوصيات ريكتسيا ، كلاميديا و ويروس ها مقايسه شده است .
ريكتسيا ها باكترياى ميله ای شكل يا كو كوباسيل مانند هستند كه به حد زياد چند شكلى نشان ميدهند . اين دسته از ميكروب هاى گرم منفى ، بى حر كت بوده و به طريقه انقسام دو گانه ، تقسيه ميشوند . طول جسم آنها يى تا دو ميكرون ميباشد . يكى از صفات مشخصه اكثر ريكتسيا ها اين است كه بوسيله حشرات به انسان انتقال پيدا ميكنند . به استثنأ در اين مورد كو كسيلابورنتى (Cocciella burneti) عامل تب ميباشد كه از راه هوا يا مواد غذائى آلوده و همچحنين حشرات انتقال پيدا ميكند . چند نمونه از بيمارى هاى ناشى از ريكتسيا ها عبارتست از : تيفوس همه گير (ريكتسياى پرووازكى R.Prowasek) كه بوسيله شیش منتقل ميشود ، تيفوس موشى بومى (ريكتسياى طيفى) كه بوسيلهُ كيك موش انتقال مى يابد و بالاخره تب خالدار كوه هاى راكى (ريكتسياى ريكتسى (R.Rickettsii

كــــاميديا:

كلاميديا باكترى كوكوس مانند به اندازء 1,5-2 ميكرون ميباشند . همه كرام منفى ، بى حركت و بر خلاف اكثر ريكتسيا ها براى انتقال نيازى به حشرات ندارند . اين ميكروبها از راه تماس مستقيه و از راه هوا منتقل مى يابند . دوران نمو كلاميديا ها احتمالاً مهمترين صفت مشخصه آنها محسوب ميشود ـ شكل عفونى ميكروب كه بنام جسم

ابتدائى محسوب ميشود خود را بوسيله ميزبان متصل ميسازد . سلول ميزبان اين شكل ميكروب را بلعيده و آنرا در واكيول خود جاى ميدهد . جسم ابتدائى در درون سيتوپاسم سلول ميزبان تجديد سازمان يافته و بصورت جسم اولى عفونى بزر گترى نمو حاصل ميكند ـ آنگاه اين شكل از پرازيت متوالياً تقسيم گشته و اجسام ابتدائى عفونى كوچكترى را توليد مينمايد . سرانجام اين اجسام از درون سلول ميزبان آزاد گشته و در سلول هاى ميزبان اطراف خود عفونت ايجاد ميكند . فقط دو نوع از كلاميديا وجود دارد ، كلاميديا تراكوماتيس (Chlomydia Trachomatis) كه در اغلب موارد در انسان كورى ايجاد ميكند و به علاوه عامل اصلى اروتريت غير نوعى كوكى شناخته شده كه امروزه شايع ترين بيمارى مقاربتى در كشور امريكا ميباشد . نوع كلاميديا پسى تاسى (Ch.Pesitaci) عامل پسى تاپوز (Pesi (عامل اونيتوز (Ornithosis) ميباشد . لفوگرانولوما ونريوم (tymphogranunoma venereuw))
بيمارى مقاربتى ديگَرى است كه بوسيله كلاميديا ايجاد ميشود . (عץ / / FAr)

امراض وايروسىوريكتسيائى (Rickettsial and Viral Diseases) :

امراض كه عامل وايروسى و ريكتسيا دارند از امراض باكتريائى با اختلافات زير فرق ميشوند : I. آفت جلدى زيادتر از سبب وايروسها و ريكتسيا ها نظر به باكتريا توليد ميشوند .

「. وايروسها و ريكتسيا ها در دماغ آفت منتشر را توليد ميكنند در حاليكه از سبب باكتريا در دماغ آبس هاى
موضعى تشكيل مينمايد .

ّ. Interstitial pneumonia ميشود . مرضيكه توسط ريكتسيا و وايروسها در ريه توليد ميشود بنام مرض

ياد ميشود .
「. حجرات Ganglion cells نشو و نما ميكند .

ه. خاصه عمدهُ وايروسما و ريكتسيا عبارت از ماءوف كردن انساج و يا حجرات مخصوص عضويت ميباشد .
: Richettsial امراض
اين امراض به پنج گَروپ ذيل تقسيم شده اند :
Typhus Fever .I
Spotted fever .r

:Spotted fever

انواع متعدد Spotted fever موجود است . آفت اين مرض مشابه تيفوس بوده باين تفاوت كه درين مرض جدار شعريه ها زياد تر تخريب ميكَردد و اوعيه بزرگى بيشتر ماءوف ميشوند ـ از همين سبب لكه هاى سرخ جلدى بزركتر ميباشند . نكروز هاى جلدى موضعى بوده و احتشاتيكه در دماغ رخ ميدهد بزر كتر ميباشد . آفات قلبى باعث عدم كفايه قلب نيز شده ميتواند . عامل مرضى توسط كنه (Ticks) به انسان انتقال مينمايد .

ويروس و منشا تكاملى آن:

بوده عامل و سبب امراض انسانى ، حيوانى و نباتى ميگردند .

منشأ تكاملى وايروس ها تا حال دانسته نشده ولى فرضيات يا نظريه هاى زير در اين زمينه از طرف علما ارايه
گرديده است :

1- وايروس به شكل يرازيت با حجرات اولى يكجا ييدا كرديده است براى اين نظريه كدام ثبوتى وجود ندارد ، وايروس در حجرات انساج داخل ميكردد كه بصورت مخفى باقى ميماند بدون آنكه آن ها ها
را تخريب كند .

「- شايد وايروس از اجزاى حجرات ميزبان بوجود آمده باشد كه بعداً به شكل خود مبدل كرديد اريده است . اين ها مانند جن هاى اند كه قدرت زندگى كردن مستقل از حجره را دارند يك قسمت از جن هاى وايروس به شكل نا شناخته در حجره باقى مانده اين تيورى پايه علمى دارد و اكثر وايروس ها بها
همين شكل است .

ץ- اين تيورى به قسمى است كه وايروس از حجرات زنده آزاد بوجود آمده ، ولى شواهد وجود ندارند كه وايروس ها از باكترى بوجود آمده اند .

ويروسها از نظر ساختمان ، موجودات بسيار ساده ای هستند كه بجز اسيد هسته الى محصور در يك يا یند لايه محافظ ، فاقد ساير اجزا سلولى بوده و بنابرين ذراتى غير سلولى و سيستمه هاى زنتيكى اند ـ وايروسهيا به طور مستقل
 در خارج از سلول زنده بصورت مجموعه ای از ماليكولماى متبلور بيجان يافت ميشوند . ذرات وايروسى در شرايط خارج از سلول (ويريون Virion) نيز ناميده ميشوند . سلولى كه وايروس پس از ورود به سلول ميزبان امكانات امرات متابوليسمى را در اختيار خود گَرفته و آنها را در جهت تكثير و فعاليت خود بكار ميبرد . وايروسها به مراتب از سلول كوچكتر اند و ابعاد انواع شناخته شلده آنها متفاوت و بين 0,2 تـ 0, 0,3 ميكرون است . ذرات وايروسى از نظر اندازه ، شكل و ساختمان كيمياوى بسيار متفاوت اند . برخى وايروسمها حاوى ماده جنيتيكى RNA و برخى داراى DNA هستند ولى هر كز هر دوى آتها را نميتوان با هم در يك وايروس يافت . اين اسيد هاى هسته ایى از لحاظ اندازه و مقدار خصوصيت در وايروسهما متغاوت اند ، ميتواند يكى رشته ایى يا دو رشته اى باشند . نكتئ جالب توجه آنكه در برخى از وايروسها اسيد هسته ایى به شكل ماليكول واحدى يافت نميشود بلكه به
 بيمارى (ايدز) از اين كروه اند ، دو ماليكول مشابه از نوع RNA دارند و وايروس آنفلونزا داراى ^ماليكول RNA است.

ساختمان ذرات واييوسى بسيار متفاوت است ـ ماده هسته ای ويريون همواره در غلاف يروتينى به نام كيسيد (يوشه Capsid) محصور است . اين يوشه پيوتينى از واحد هاى بنام كيسومر (Capsomer) ساخته شده اند . در

معدودى از وايروسها همهٔ كپسومير ها از يک نوع ماليكول پروتينى ساخته شده اند ، در حاليكه اغلب وايروسها داراى كپسومير هاى از جنس پند پروتين متفاوت اند . اين واحد هاى پروتينى اختصاصى هستند . مجموعه اين مادءٔ هسته
 ، اما معدودى از اين ويروسها را ويروسهاى (پوشدار) گويند و در آنها نوكلئو كپسيد در غشايى محصور است . غشا هاى ويروسى معمولاً از جنس ليييد هستند ولى غالباً بروتينهاى اختصاصى نيز در اين لايه ليييدى قرار دارند ـ غشاى لييبد از غشاى سلولى ميزبان گرفته ميشود ـ در برخى از پوشها ، پروتينها بصورت خار ها يا ميخ هايى ظاهر ميشوند . در وايروسهاى يوشدار ، پوش نخستين بخشى است كه سلول ميزبان برخورد ميكند . اختصاصى بودن وايروس براى ميزبان و بعضى از خصوصيات نفوذى وايروس تا حدودى از طريق خصوصيات غشاى وايروسى كنترول ميشود . يِيجيده ترين

واير روسها از نظر ساختمانى ، بعضى از وايروسهاى باكتريايى هستند كه سر چند وجهى و دم ماريِپیى دارند .
توسط شكل ا-r نمايش داده ميشود .

در داخل ويريون غالباً يك يا چند انزايم وجود دارد ، اين انز ايمها به هنگام همانند سازى مواد هسته ای وآلوده
كردن سلول ميزبان فعال اند .

نوكلئو كسيد وايروسما از تقارن ساختارى زيادى برخوردار اند . اين تقارن به نحوهٔ اتصال واحد هاى پروتينى غلاف وايروسى بستگى دارد ـ ويريونها از نظر مارفولوزى بر دو نوع اند : ميله ایى و كروى • وايرسهاى ميله ای شكل

دارى تقارن ماريیچیى و وايروسهاى كروى داراى تقارن چند وجهى هستند . قرار اشكال زير :

 وايروس ها .

دوران زندگى وايروس ها :

از نظر كلى رشد وايروسما جانورى و باكتريوفازٌ مانند يكديگر است ـ اما اين دو در جزئيات با هم تفاوتهاى دارند

- بطور كلى مراحل مختلف رشد و تكثير وايروسها به ترتيب عبارتند از :

الف: اتصال وايروس به سطح خارجى سلول از راه كپسيد يروتينى وايروس يا غالاف آن صورت ميگيرد .
در مورد باكتريوفار ها ، اتصال وايروس ها به سلول باكتريا از طريق تشكيل بيوند هاى يونى بين رشته هاى انتهائى دُم وايروس و نقاط پذيرنده موجود در سطح بيرونى باكتريا است . ب : وارد شدن وايروس به سلول ميزبان • باكتريوفار غلاف پروتينى خارجى خود را در بيرون حجره باقى ميگذارد . اين غلاف هيج نقشى در عمل همانند سازى ندارد و نفوذ باكتريوفاز به داخل حجره باكتريا تنها از راه ترزيق
نو كلئيك اسيد وايروس به داخل آن صورت ميگيرد .

ج : مرحله نايپيدى- آغاز اين مرحله در بيشتر وايروسهاى حجرهُ جانورى با از دست دادن غلاف پروتينى وايروس و آزاد شدن نوكلئيى اسيد همراه است . گمان ميرود هضم غلاف يروتينى وايروس توسط انزايم هاى سلول ميزبان كه به تحريی یروتين وايروس ترشح ميشوند ، صورت ميگيرد ـ در اين مرحله وايروس در سلول قابل شناسائى نيست. د : سنتز مواد وايروسى كه بر حسب نوع ويروس ممكن است در سايتوهالازم ، هسته و يا هر دو بخش حجره انجام

هـ : كامل شدن وايروسها و سوار شدن بخشهاى مختلف ساختار آنها بر روى هم. .
و : آزاد شدن وايروس هاى كامل كه بر حسب نوع وايروس به چند طريق صورت ميگيرد مثلاً وايروس هاى فلج
كودكان (پوليو Polio (poliomyelitis) به تدريج از راه منافذ ايجاد شده در غشاى حجره بيرون ميروند در حاليكه وايروس انفلونزا يا وايروسهاى مولد سرطان خون و سرطان پستان در موش از راه جوانه زدن از حجره ميزبان
. به بيرون ميريزند
از أنجائيكه مراحل فوق همراه با متلاشى شدن باكتريا است ، اين دوره رشد وايروسى را دوران كافت '
(دوران ليتيك) مينامند . DNA ای برخى از باكترى فاز ها بنام فار معتدل ميگويند ، ممكن است پس از ورود
Lysogenic cycle باكتريا به كروموزوم آن متصل شود و همراه با آن تقسيم گردد . اين نوع دوره رشد بنام ناميده ميشود . در واقع وايروسهاى معتدل ميتوانند بر حسب شرايط محيطى به يكى از دو حالت كافت يا كافتى زا رشد

كنند . 321 / XVI)

[^16]هنگام تبديل دوران ليتيك به دوران كافتى يعنى جدا شدن مادةً هسته ایى واييوس از مادةٔ اصلى ميشود． وايروسهاى حاوى رزهاى جديد يس از آماده شدن و ورود به حجره ميزبان بعدى ، اين رنها را را از ميزبان سابقه به داخل حجره جديدى ميبرند و بدين ترتيب عامل انتقال مادة جنتيكى از حجره ایى به حجره ديگر ميشود ．

طريقه هاى ورود وايروس ها به بدن ميزبان ：

واييروس ها از طرق زير به بدن ميزبان انتقال ميكنند ：
（）مجراى تنفسى－وايروس بوسيله ذرات ترشحى ، كه با عطسه يا سرفه پراكنده ميشوند انتقال مى يابد
(وايروس انفلونزا) و ايجاد التهاب بستگى به محيط مناسب دارد .

「）مواد خوراكى－امراض واييوسى ممكن است همراه مواد غذائى آلوده به مدفوع ، ترشحات و ادرار（ توسط
حشراتى ماند مكَس) انتقل يابند ، مانند بيمارى فلج كودكان .
（艹）گزيدن جانوران－معروفترين بيمارى وايروسى از اين طريق انتقال مى يابد مانند مريضى سگَ ديوانه است كهـ

 ．ميكند

ث）تماس مستقيم－وايروس تبخال نمونه ای از وايروسهاى است كه بوسيله تماس مستقيهم از ميزبانى به ميزبان ديگر منتقل ميشود ．
در مورد وايروسهاى مخصوص سلول گياهى با وجود گوناگونى ميزبان ايجاد مرض از طريق زخم يا آسيب در سطح گياه بستگى دارد ـ امراض وايروسى گياهان بوسيله عوامل طبيعى گوناكون به جانوران متتقل ميشوند ．

دفاع بدن در برابر وايروسها ：

در امراض وايروسى و به هنگام حمله ويروسها به بدن علاوه بر آنتى بادى（ Antibody ）ماده ديگَرى بنام اينتروفرون（＇Interferon）نتش حفاظت بدن را در مقابل وايروسها به عههده دارد ـ انتى بادى معمولاً چֶند روز پیس از ورود وايروس به بدن توليد ميگرَدد ، در حاليكه اينترفرون در مدت حِند ساعت ظاهر ميشود ．ميكانيسم عمل انتى بادى در جلوگيرى از رشد وايروس دقيقاً مشخص نشده است ـ به نظر ميرسد كه اين ماين ماليكول در مقابل واييرس ها واكنش نشان ميدهد و از اتصال آتها به سلول ميزبان جلوكيرى ميكنند ـ در شرايط ويثه ایى مالكيولهاى انتى بادى

ممكن است قادر به خنثى كردن وايروس نباشند ـ مثلاً در بعضى از امراض وايروسى با وجود غلظت زياد انتى بادى در خون وايروسها همچحنان به فعاليت خود ادامه ميدهند .
اينترفرون ماده ای است پروتينى كه در پاسخ به آلودگى وايروسى ، بوسيله سلول ساخته ميشود . اين ماده بطور غير اختصاصى عمل ميكند و مانع پخش شدن وايروس و انتقال آن به حجرات ديگَر ميگردد . اينترفرون حجره غير آلوده را به ساختن انزايمهاى با فعاليت ضد وايروسى وادار ميكند و مانع تكثر وايروس ميشود . (FVV / F) . اينترفرون معمولاً قادر به توقف ساختن عفونت پس از آغاز همانند سازى وايروس در حجره نيست در نتيجه حجره آلوده به وايروس نميتواند تحت تاثير اينتروفرونى كه خود توليد كرده است نجات يابد ، اما حجره مجاور غير آلوده بطور موقت نسبت به عفونت حاصل از طيف گسترده ای از وايروسما مقاوم ميشوند ، بنابرين معافيت حاصل از انتى بادى اختصاصى ، و معاوفيت حاصل از اينتروفرون عمومى است و تنها به همان وايروس محر ك توليد اينترفرون اختصاص ندارد .

امروزه براى پيشگيرى از شيوع بسيارى از بيمارى هاى وايروسى از جمله آبله ، فلج كودكان ، مريضى سگ ديوانه ، تب زرد ، سرخكى و غيره از واكسين استفاده ميشود ـ واكسين هاى عمده امراض باكتريائى و وايروسى قرار زير

نام ميبريم:
Bacil calmet gyrein (B.C.G.) .) Dephtheri pertosis tetanos (D.P.T.) . r Oral pilia vacain (O.P.V.) . Mesales .f

Titanous toxid (T.T.) . .
بطور كلى دشوارترين امراض عفونى از نظر كتترول ، امراض وايروسى هستند و اين امر ناشى از طبيعت ويزه́ وايروسهاست . از آنجا كه وايروس جزئى از حجره ميزبان ميشوند ، لذا مبارزه با آنها و نابود كردنشان بدون آسيب رساندن به حجره ميزبان دشوار است . به عالوه از آنجائيكه وايروسها در خارج حجره ميزبان از نظر زيستى ذراتى غير فعال اند ، لذا در اين شرايط نسبت به بازدارنده هاى متابوليسمى و تر كيبات ضد ميكروبى مقاوم اند .

ساختمان وايروس ها

نو نلئيكى اسيد :
همانطوريكه قبلاً ياد آورى گرديد يی ذره وايروسى داراى يك هسته مركزى نوكلئيكى اسيدى (DNA يا DNA) به عنوان ماده جنتيكى ميباشد . نسبت نوكئيكى اسيد به پروتين غلاف وايروس از يك فيصد در وايروس انفلونزا تا
 ها تغير مى يابد . بر خلاف حجرات پركاريوتى و ايوكاريوتى كه همواره داراى DNA به عنوان مواد زنتيكى اصلى خود ميباشند (RNA نقش كمكى دارد) ، وايروس ها داراى يكى از اين دو نوع اسيد بوده و هرگز هر دو را ندارند - نوكلئيك اسيد وايروس ها ممكن است يك فيته ایى يا دو فيته ایى باشند . بر حسب نوع وايروس ، نوكلئيك اسيد ممكن است بصورت خطى يا حلقوى بوده و در برخى از وايروس ها مانند وايروس انفلونزا بصورت پندين ماليكول جدا از هم ديده ميشود .

فصل سوم
كپسيد وغشاء :
نوكلئيك اسيد وايروس بوسيلهُ غلاف پروتينى بنام كسيد (Capsid) احاطه ميشود . كپسيد وايروس كه معمارى آن سرانجام بوسيله نوكلئيى اسيد وايروسى تعين ميگردد ، بخش عمدهُ وايروس را بويزه در وايروس هاى كوچچ شامل ميشود . هر كپسيد از واحد هاى كوچک پروتينى بنام كپسومر (Capsomere) ساخته شده است . در برخى از وايروس ها ، پروتين سازنده گپسل از يی نوع و در عده ای ديگر از چندين نوع پروتين ساخته شده است. در عدهُ از وايروس ها ، كپسيد بوسيله پوششى كه معمولاً از ليييد ها ، پيروتين ها و كاربوهايدريت ها است پوشيده شده است . تر كيب ماليكولى اين وايروس هنوز شناخته نشده است ، بعضى وايروس هاى حيوانى با محصول خاصى به هنگام خارج شدن ازحجره لايهُ از غشاى سيتوپلازمى ميزبان را دور خود ميگيرند و به اين ترتيب پس از آزاد شدن حجره عالوه بر كیسيد حاوى پوشش نيز ميباشند . در اغلب موارد پوش از پروتين ساخته شده بوسيله نوكلئيك اسيد وايروسى و همحنین موادى از اجزاى سلول سالم ميباشد . بر حسب نوع وايروس پوشش ممكن است داراى زوائدى بنام خار بوده و يا فاقد آن باشد . اين خار ها تركيب پيحيدهُ كاربوهايدريتى و پروتينى داشته و از سطح پوش بطرف بيرون رشد كرده اند . اين خار ها در برخى از وايروس ها به حدى اختصاصى است كه وسيله اى براى شناسائى وايروس محسوب ميشود . توانائى عدهُ از وايروس ها نظير وايروس انفلونزا به آكَلوتينه كردن حجرات سرخ خون با اين خار ها ارتباط دارد ـ اين قبيل وايروس ها به حجرات سرخ خون چسييده و بين آنها پل ايجاد ميكند . و تودهُ حاصل را هماگلوتيناسيون ('Haemagglutination) مينامند و اين پيديده اساس چند نوع تجربه در لابراتوار ها هحسوب ميشود ـ ناگتنه نماند كه پروتين غشا و هماگلوتينين از نوع گليكوپروتينى بوده و در حدود يی سوم يروتينى ويريون را تشكيل ميدهد و بيشتر يروتين باقى مانده از نوع نوكلئويروتين است . وايروس هاى كه كپسيد آنها بوسيله پوشش پوشانيده نشده است ، وايروس هاى برهنه مينامند در وايروس هاى برهنه كيسيد نوكلئيى اسيد را از تاثير انزايمه هاى نوكلاز در مايعات بيولوزيى حفظ كرده و چسييدن آنها را به حجرات ميزبان حساس فر/هم ميسازد . (سا / (\%)) .

$$
\begin{aligned}
& \text { شكل ش-r } \\
& \text { b ع) عكس مايكروسكوب الكترونى وايروس ميوزائيك توتون كه شكل ميله ايى مارييجى را نشان ميدهد }
\end{aligned}
$$

وايروس ها از نظر شكل بصورت عموم به چهار گروپ تقسيهم گرديده اند :
ا. اشكال Rod وانند Robacco msoaiec وامثل Rabies virus .
「. اشكال مدور مانند وايروس انفلونزا .
.
ع.

طبقه بندى وايروس ها :

طوريكه قبالً كتهه شد براى سيولت مطالهd وايورس ها را بر حسب نوع ميزبان به وايروس هاى حيوانى ،

را آسان ميسازد ولى مبناى علمى ندارد .

قايمى ترين روش طبقه بندى واييرس هاى خيوانى بر مبناى اندام ألوده شده و بيمارى توليد شده استوار. بوده
و آن را طبقه بندى بر مبناى علايم مريضى مينامند .

جون يك نوع وايروس ممكن است بر حسب اعضاى كه هورد حمله قرار ميلهد بيش از يك نو نوع مريضى يديد

 بندى واييوس هاى حيوانى كه بر پايه صفات مارفولوزيكى ، كيمياوى ، فزيكى انجام كُرفته ، در ساير طبقه بندى ها ها صغاتى مانند حساسيت نسبت به عوامل فزيكى و كيمياوى ، خواص ايمنولوزيك ، محل تكثير (هستها يا سيتويلاسم

$$
\begin{aligned}
& \text { جبدل طبقه بندى وايروس ها از روى عاليم مريضى : }
\end{aligned}
$$

جدول طبقه بندى وايروسهاى حيوانى بر اساس صفات ساختمان كيمياوى و فزيكى

هاى انتصاصى انْ (قطر بر هسب
اناونوتر)
 همرار با عغونت هاي آنوّويوروسى مى باشثن احتمالأ قتط موش صحراثى وي

هامستر را آلوده عيسازند
 ميكنند. وايرورس زيكّلي انساني (يابى رشته الى
لوما) وبرخ وايرورسيائى كهدر دريوانات سرطان زا هستند (يولى يوماو و سمين)

باين كُروه نلق دارند.

اندازه متوسط، مواد عفونت هاى دستگاه	$v+-\lambda$.	دو	چند وجهه	آدنووايروسها	
تنفسى در انسان ، برخى در حيوانات تومر توليد ميكنتد					
اندازه متوسط عامل برخى از مريضى در انسان نظير تبخال ، آبله ، مرغان و . مونوكلئور التهابى .	$1 \Delta \cdot-r \Delta \cdot$		چنّ وجهه پوششدار	هريس وايروسها (تبخال ، آبله ، مرغان ،)	
اندازه متوسط يوشش داراى خار - قادر به اگلوتينه كردن گَلبولماى سرخ ميباشد ، عامل انفلونزا .	$\wedge \cdot-r \cdot .$	RNA قطعه قطعه شده	ماريِّحى پوششدار	$\begin{array}{r} \text { مايكرووايروسها (انفلونزا } \\ \text { A,B,C } \end{array}$	
از لحاظ شكل مشابه مايكرووايروسها ولى عموماً بزر كتر - عامل پار اانفلونزا ، ، . سرخكـ ، اوريون	$1 \Delta-\mu . .$	RNA قطعه قطعه شده	ماريِحیى پوششدار	(إراميكرووايروسها (سرخك ، اوريون)	
با التهاب بخش فوقانى دستگاه تنفس و سرماخوردگى ارتباط دارند .	$\Lambda \cdot-1 \mu .$	يك رشته ايى RNA قطعه قطعه شده	مارييحچى پوششدار	كروناوايروسها	
شامل همه وايروس هاى RNA دار تومر راعامل لوسمى و تومور در حيوانات ، برخى عفونت هاى وايروسى كند توليد ميكند .	I..-Ir.	يك رشته ایى RNA قطعه قطعه شده	مارِيپیى پوششدار	ارترووايروسها	
شبييه كلوله با خار هاى پوششى عامل هارى و بيمارى نيو كاسل در مرغ دارای RNA واجد گرانول-برخى مولد التعاب وايروس كند .	$V \cdot-1 \Lambda \cdot$ $\omega \cdot-r \cdot .$	يك رشته ایی RNA يك رشته ای قطعه قطعه شده	ماريِّحى پوششدار ماريِّحى پوششدار	رابدووايروسها (هارى) آرنا وايروس (لاسا)	
بسيار بزرگ ، خشتى شكل ، ساختمان ییِحِيده عامل بيمارى هاى مانند آبله انسان ، مولوسكوم كانتاجيوزم (ضايعات ; واكسينيا) - ويروس واكسينيا ايمنى نسبت به آبله ايجاد ميكند .	r..-ra.	دو رشته الى DNA	*وششدار كمپّكس	وايروس هاى آبله (آبله آبله كاوى ، واكسينيا)	

تكثر وايروسها :

نوكلئيى اسيد هر ويريون معدودى از ثنها لازم براى سنتز وايروسها را دارا ميباشد . اين ثنها شامل ثزهاى سازنده اجزا ساختمانى ويريون نظير پروتين كسول و جين هاى سازنده انزايمه هاى لازم در دوران زندگى وايروس ميباشد . اكثر انزايم هاى وايروسها يعنى انزايهم هاى كه رنهاى آنها در نوكلئيك اسيد ويروس قرار دارد بخش از وايروس نيستند بلكه در داخل حجره ميزبان ساخته شده و عمل ميكنتد . نقش انزايمه هاى وايروس تقريباً بطور كامل با همانند سازى و آماده كردن نوكلئيك اسيد وايروسى ارتباط دارد و هر گز با دستگاه سنتز پروتينى يا توليد انرزى رابطه ندارد . با وجود آنكه كوچكترين وايروسها برهنه فاقد هر نوع انزايمهاى از يشش ساخته شله هستند ، ولى ويريون هاى بزر كتر ممكن است محتوى يك يا چند انزايم باشند و اين انزايمه ها در نفوذ وايروس بداخل حجره ميزبان همانند ساز نوكلئيك اسيد آن نتشى بعهمده دارد . بنابرين براى تكثير يک ذره وايروسى بايد وايروس حجره ميزبان را مورد حمله قرار داده و اختيار دستگاه ميتابوليكى آنرا بعهره گيرد ـ در جريان تكثير وايروسى ، يك ذره وايروسى صد ها حتى هزار ها وايروس توليد ميكند . اين تغيرات شديد در حجره ميزبان به مرگ آن منجر ميگُردد ـ مراحل تكثر وايروسها قرار ذيل اند :

وايروس ها در سطح حجرات توسط رستور ها جذب شده ، رستور براى وايروس هاى : Adsorption مختال از لهاظ تركيب كيمياوى تفاوت مينمايند مثلاً وايروسهاى Picorna يروتين وبراى وايروس هاى . ميباشد Oligosaccharial r- نفوذ درحجره (Penetration) : وايروس توسط حجرات حيوانى به شكل Engulfement بلع ميگردد كه اين عمل بنام Viropexia ياد ميگردد هركاه اين واييوس ها يوش داشته باثند ، يوش آن در سطح حجره باقى مانده و نكوكيسيد آن داخل حجره ميكَردد . ץ-) (Uncoating) : اندكى بعد از نفوذ و يا همزمان به آن نوكلئيك اسيد واييوس بصورت فزيكى جدا ميگردد. در اين مرحله قابليت مصاب را ندارد . ₹- مرحله سنتز اجزاى وايروس : اين مرحله بعد از مرحله Uncoating صورت ميگيرد . نوكلئيك اسيد
 وايروس ها از نتاهى ساختمان از هم تفاوت دارند ـ مثلاً براى تركيب نوكلثئيك اسيد واييرس Popova به صرف شدن ثروتين محدودى كافى است . حالانكه براى تركيب نوكلئيك اسيد وايروس Pox هر بار پند صد پروتين كود ميگردد .

ه- پخختگى : نوكلئيك اسيد و هروتين وايروس ها در هسته و با سايتويلازم تركيب ميكردد . وايروس هاى Herpes يوششدار يوش خود را از غشاى حجروى به شكل Budding تهيه مينمايند . Assembly آزاد شدن وايروس ها : به تعقيب تركيب يروتين و نوكلئيك اسيد مرحله Assembly - ا كه بنام Morphogenesis ياد ميكَردد آغاز كَرديد و بعد از آن مرحله توليد وايروس كه بنام آزاد شدن ياد ميكردد. خارج شدن واييوس از حجره به دو شكل است :
Lysis .a كه وايروس از طريق غشاى حجروى خارج ميگردد .
وايروس ها در حجرات باكتريا به مدت ها--r دقيقه تكثير نموده و در حجرات حيوانى به مدت ها--r ساعت
وقت را در بر ميگيرد .

لنتى وايروسها بسيارى انواع از جمله •r نوع مختلف از پريماتمها (مانند ميمونها) جدا شده اند . دو نوع متمايز از وايروسها انسانى AIDS به نام HIV-1 و HIV-2 وجود دارند . افتراق اين دو نوع وايروس از طريق ساختار
زنومى و ارتباط فيلوزنيك با ساير لنتى وايروسهاى يريمات صورت ميگيرد .

اعتقاد بر اين است كه HIV انسانى از عفونتهاى بين انواعى توسط وايروسهاى ميمون روستائى آفريقائى نشأت كرده است . احتمالاً انتقال توسط تماس مستقيه انسان با خون پريماتهاى آلوده صورت ميگيرد و بوجود آمدن

تغييرات خاص اجتماعى ، اقتصادى در ابتدا و اواسط قرن •ץ زمينه ای را براى گسترش التهاب وايروسى ، تثبيت
عفونت آن در انسان و ايجاد اييدمى فراگير فراهم ساخته است .
: در درجه اتاق در عرض •ا دقيقه توسط هر يك از مواد زير كاملاً غير فعال ميشود HIV

- محلول سفيد كننده خانگى كلورين • •
-
- ايزوپروپانول هr٪ •هـ

همحֶنين وايروس در دو انتهاى طيف PH غير فعال ميشود اما هنگامى كه HIV در خون لخته شده يا نشده در سرنگا يا سوزن وجود داشته باشد ، بايد حد اقل •ץ ثانيه در معرض محلول سفيد كننده كلورين غير رقيق قرار گيرد ، تا غير فعال شود . وايروس توسط Tween-20 ، دو نيم فيصد غير فعال نميشود . گرجه پارافومالدئيد ويروس آزاد در محلول را غير فعال ميكند ، مشخص نيست كه آيا به اندازه كافى در نسج نفوذ ميكند تا تمام

وايروسهاى موجود در سلول هاى كشت داده شده و يا نمونه هاى نسجى را غير فعال سازد يا خير ؟
الگَى بيمارى طبيعى در انواع مختلف متفاوت است ، اما تعدادى خصوصيات شناخته شدهاند :
1- وايروسها از طريق تبادل مايعات بدن انتقال مى يابد .

ץ- ويروس بطور عمده نامشخص در ميزبان آلوده باقى ميماند . هر چند ممكن است در سطوح بسيار كم حضور داشته باشد .

ץ- ميزان جهش ها بالا است و انتخاب جهش هاى مختلف ، بستگى به شرايط متفاوتى دارد كه وايروس در آن
به سر ميبرد (فاكتور هاى ميزبان ، پاسخ معافيتى و نوع نسجها) .

「 در عفونت ايفا ميكند . لنتى وايروسها از اين نظر كه ميتوانندحجرات انتهائى تمايز يافته ای را كه قابليت
تقسيم ندارند ، آلوده كنند با ساير رترووايروسها متفاوت هستند .

ه- ممكن است تا ايجاد مريضى سالها طول بكشد . ميزبان آلوده گى معمولاً بر ضد وايروسى انتى بادى توليد
ميكنند اما قادر به پاكى سازى عفونت نميباشند ، در نتيجه وايروس براى تمام عمر با ميزبان باقى ميماند .
\&- علایم بالينى ميتواند از بيماريهاى لنتى ويروس دوره كمون طولانى نميباشد .

و فاكتور هاى موثر در یاتوزنز عبارتند از :

$$
\begin{aligned}
& \text { • سن : افراد جوان در خطر بيشترى هستند . } \\
& \text { • استرس : استرس ممكن است سبب آغاز بيمارى شود . } \\
& \text { • زنتيكى : بعضى از انواع حيوانات مستعد تر هستند . } \\
& \text { • عفونتهاى همزمان : ممكن است سبب تشديد بيمارى يا تسهيل انتقال وايروس شود . } \\
& \text { :HIV ساختمان و تر كيب وايروس }
\end{aligned}
$$

اين موفقيت مرهون ويرولوثى ماليكولى پيشرفته است كه تنها چهار سال پس از شناخته شدن يک بيمارى و سندرم غير معمول به نام AIDS ، در سال (191) ، عامل ايجاد كننده آن شناسائى و جداسازى شده است . HIV يى رترووايروس و عضو كوچى فاميل لنتى وايروس است و بسيارى از خصوصيات فيزيكى ، كيمياوى فاميل خود را

خصوصيات مورفولوزيك منحصر به فرد مبتلا HIV ، وجود نوكلوئيدى استوانه اى در ويريون بالغ است . اين نوكلوئيد ميله ای شكل كه داراى ارزش تشخيصى ميباشد ، در تصاوير ميكروسكوپ الكترونى ديده ميشود . اين ويروس سه ثن لازم براى همانند سازى دارا ميباشد ـ حدود \& زن اضافى ديگر ، بيان وايروس را تنظيه ميكنند و در پاتوثن مريضى در بدن حايز اهميت هستند . نمونه هاى جدا شده مختلف HIV مشابه نيستند ، اما ظاهراً طيفى از ويروسماى مرتبط به هم را تشكيل ميدهند . گروههاى مختلفى از ثنوم وايروسى در افراد آلوده يافت شده است . www.microbio.uab.edu كَسترش جهانی AIDS :

بر اساس احصائيه سال ، بيشترين ميزان التهاب در نواحى صحراى افريقا بـوده اسـت . در بعضـى شـهر هاى افريقا كه شيوع عفونت بالاست حدود $\%$ ¹ از بالغين به وايروس آلوده هستند ـ عفونت به سرعت در حال گسـترش به جنوب شرقى آسيا است . به دليل اينكه ايدز غالباً بالغين جوان و نيروى كار جامعd را مبتلا ميسازد ، إييدمى ايدز اثـر آن زيانبار بر ساختار اجتماعى و اقتصادى كشور ها بر جاى كذاشته است . تصور بر اين است كه انتشار سريع و جهـانى ايدز در اواخر قرن •ץ از مهاجرت عظيم جوامع روستائى به مراكز شهرى همراه بـا نقـل و انتـــال افـراد آلـوده نـواحى مختلف جهان به دليل معضلات شهرى ، گردشگَى و مسافرتهاى شغلى ، نشـان گرفتـه اسـت . ايـــز بيشـتر مـردان هوموسكوال را مورد حمله قرار ميدهلد نظر به احصايه هاى بدست آمله ه. 9. فيصد مريضان مبتلا به ايدز مردهـا ، ه.

فيصد افراد كه خود اخذ ميدارند منتقل شده و \& • فيصد مريضان هموفيلى ، 9. • فيصد هتروسـكوال ، V فيصـد ديگـر
اقشار ميباشند . WWW. microbes.info

عفونت هاى HIV در انسان :

وايروس ايدز (HIV) وايروسى است كه باعث نقص سيستم معافيت بدن ميشود و توليد مريضى ميكند. وايروس ايدز (HIV) مخفف (Human Immuo Deficincy Virus) است . اين وايروس در گروپ رترووايروسها قرار دارد ـ رترواويروسها ، حاوى جن RNA همراه با RNA پليمراز وابسته به DNA ترانس كرييتاز

معكوس ميباشند .
ذرات وايروسى حاوى ترانس كرييتاز معكوس هستند كه براى همانند سازى وايروس ضرورى است . ذرات
وايروس حاوى ريبونوكلئوريوتين ماريِحی بوده و داخل يك كیسول •r وجهى قرار دارند . سه گروه مورفولوزيى از ذرات رترووايروس شناخته شده اند . ويروسهاى نوع سوم بزرگترين رتروويروسها هستند كه بعضى ويروسها جزء اين گروه ميباشند . يكى از سب فاميل هاى رترووايروسها ، لنتى ويرينه است كه شامل عواملى هستند كه قادر اند عفونتهاى مزمن با تخريب آهسته و پيشرونده عصبى ايجاد كنند . وايروس نقص معافيتى انسان در اين گروه قرار دارد

> دوره نمادين عفونت تداوى نشده حدود يى دهه به طول ميانجامد ـ مراحل التهاب عبارتند از :

- انتشار وايروس به اعضاى لمفاوى
- نهفتگى بالينى - افزايش بيان HIV
- بيمارى بالينى
- مرگى بطور متوسط فاصله بين عفونت اوليه و تبديل آن به بيمارى بالينى حدود • ا سال ـ معمولاً در موارد درمان نشده ، مرگ دوسال پس از شروع عالايه بالينى فرا ميرسد . يك هفته الى سه ماه بعد از عفونت ، پاسخ بر ضد HIV ايجاد ميشود و سبب افزايش ميزان سلولهاى مصاب شده ميگَردد ، اما پاسخ معافيتى قادر به پاك سازى كامل عفونت نميباشد و سلولههاى آلوده به HIV در غدد لمغاوى باقى ميمانند . دوره نهeتگى بالينى ممكن است تا • ا سال به درازا بيانجامد . طى اين زمان همانند سازى وايروس بسيار بلند تخمين زده ميشود ، + ا بيليون ذره HIV در هر روز توليد و تخريب ميشود . بطريقه متوسط نيمه عمر وايروس در پالاسما حدود 9 ساعت و دوره زندگى وايروس حدود 「 تا 9 روز است . در نهايت مريضى دپار علایه عمومى و

بيمارى آشكار بالينى نظير عفونتهاى فرصت طلب ميشود . در مراحل پيشرفته مريضى ، سطوح وايروس در پلاسما بيشتر ميباشد . WWW. microbeworld.org : دا ا اثر HIV
مونوسيت ها و هاكروفاز ها در پاتورثنز و گسترش عفونت HIV نقش اساسى دارند ـ انواعى از مونوسيت ها به
 وكان هستند ـ ظاهراً سلولهاى اصلى آلوده به HIV در مغز ، مونوسيت ها و ماكروفار ها ميباشند كه ميتوان عواقب مهمى چون بروز عوارض عصبى - روانى ناشى از عفونت HIV را در پی داشته باشد . مونوسيت ها و ماكروفاز ها مخزان اصلى HIV در بدن هستند ، نه تنها ويروس در اين حجرات محفوظ ميماند ، بلكه بدين وسيله به اعضاى مختلف بدن مانند ريه ها و مغز انتقال مى يابد . WWW. microbiology.unl.edu : ب- اثر HIV بر اعضاى لمفاوى
اعضاى لنفاوى در HIV نقش محورى دارند ـ لنفوسيت هاى خون محيطى تنما ז\% از كل لنفوسيت هاى بدن
را تشكيل ميدهند و بقيه آنمها عمدتاً در اعضاى لنفاوى صورت ميگيرد ـ طى دوره التهاب تداوى نشده حتى در حين مراحل نهغته بالينى HIV فعالانه در اعضاى لنفاوى همانند سازى ميكند . در مراحل يششرفته مريضى ، ساختمان غدد لمفاوى دیار از همم گسيختخى ميگردد . س- اثر HIV بر سلول هاى عصبى :
ناهنجارى هاى عصبى در AIDS شايع است و در •ث تا • 9 در صد مريضان به درجات مختلف ديده ميشود . بيشترين حجرات كه در مغز به HIV آلوده ميشوند ، مونوسيت ها و ماكروفاز ها هستند ، ممكن است وايروس توسط مونوسيت ها آلوده وارد مغز شود و سيتو كينين هاى ترشح كند كه براى سلول هاى عصبى تو كسين ميباشد . علايم ايدز :

علايم عفونت حاد با HIV غير اختصاصى بوده ، شامل خستگى ، تورم جلدى ، سردرد ، تهوع و عرق شبانه است . مشخصه بارز AIDS مهار نيرومندى سيستم معافيتى و ايجاد طيف وسعى از عفونتهاى فرصت طلب خطرناك يا سر طانهاى غير معمول است . در بالغين بيش از بروز علايم جلدى ، تداوى شامل خستگى ، بى حالى ، كاهش وزن ، اسهال مزمن و لكه هاى سفيد روى زبان ظاهر ميشود ـ علايم بيمارى در دستگاه هضمى از مرى تا رودهٔ بزرگ از عوامل اصلى ناتوانى بشمار ميرود ـ معمولاً بدون درمان ، فاصله بين عفونت اوليه HIV و عوارض بالينى مريضى در

ياسخ نوزادان با بالغين مبتلا به HIV متفاوت است . علايم بالينى AIDS در كودكان كه از طريق مادران

 مستعد تر اند . يافته هاى بالينى عبارتند از : كاهش وزن ، بزر كیى كبد و طحال و اختلالات رشدى .

طرق انتقال HIV:

HIV از طريق تماس جنسى ، كَرفتن خون يا فرآورده هاى خونى آلوده و از مادران آلوده به اطفال در زمان
زايمان انتقال مى يابد .

- افراد آلوده بدون علامت ميتوانند وايروس را انتقال دهند ـ از زمان شناسائى AIDS ، (همجنس بازى و بیى

بندى و بارى جنسى) به عنوان عامل خطر اصلى براى ابتالا به مريضى محسوب ميشود . اين خطر با با

- مصرف خون با فرآور هه هاى خون آلوده از جمله راههماى موثر در انتقال واييرس است . بطور مثال در امريكا بيش •9\% در افراد هموفيل كه فاكتور هاى انعقادى آلوده دريافت كردند ، دارایى انتى بادى ضد HIV بودند
. متتادان ترزيقى نيز بطور شايع در نتيجه استفاده از سوزنهاى آلوده ، مبتالا ميشوند .

 عدم تغذيه با شير مادر •ب٪ موارد عفونت در داخل رحم .r٪ موارد در حين زايمان رخ ميدهد .
يِيشكيرى ، تداوى و كنترول :
- دارو هاى ضد وايروسى : تعداد روز افزونى دارو هاى ضد وايروسى براى درمان عفونت HIV مورد تائيد قرار كرفته اند . كروه هاى دارويى شامل همار كننده هاى نوكلئوزيدى ، غير نوكلئوزيدى ، انزايهم ترانس

وايروسى ، موسوم به تداوى بسيار فعال بر ضد رترووليروسها در سال 1999 در دسترس قرار كرفت .

- واكسين ضد HIV : بيشترين وسيله براى كنترول إييدمى جهانى ADIS ، توليد واكسين موثر و بى

خطر ميباشد . واكسينهاى واييروسى معمولاً به منظور ييشگيرى ازالتهاب يا مريضى در فرد سالم تجويز
ميشود.

- روشهاى كتترول : بدون استفاده از دارو ها و واكسينها ، تتها راه جلوكيرى از كسترش

آيبدمى جهانى HIV برقرارى نحوه ای از زندگى است كه فاكتور هاى خطر ذكر شده را به حد اقل ميرساند و يا حذف ميكند . تا كنون هيج مورد ابتالا از طريق تماسهاى معمولى نظير عطسه ، سرفه و غذاى مشترى كزارش نشده است .

وايروس هاى نباتى :

وايروسهاى نباتى از بسيارى جهات به وايروس هاى حيوانى و باكتر يائى شباهت دارند . مطالعه درباره اين نوع وايروس وجه اشتراك خصوصاً بعد از سال الـ اكه بلاكى و براكه ثابت كردند كه وايروس غده زخمى شبدر نه تنها در نبات بلكه در زنجره ناقل خود نيز تكثير مى يابد . بنابرين ميزبانهاى بعضى وايروس ها را ميتوان هم در جهان جانوران و همم در جهان گياهان يافت .
وايروس هاى گیاهى وايروسى هاى هستند كه در گياهان توليد امراض ميكنند . وايروسها از جلبكها ، قارچها ، گَلسنگَمُا ، خزه ها ، سرخس ها ، و گَياهان عالى جدا شده اند ، ولى در گَياهان عالى بيش از گیاهان یست مورد مطالعه قرار گرفته اند .وايروسها به نباتات زراعى خسارت عمده ایى وارد ميسازند . در نباتات برخلاف گروه هاى ديحَر ، وايروسهاى رشته ای دراز زياد ديده ميشود . ماده جنيتكى اكثر وايروسهاى گیاهى RNA است ، ولى در گروه ويروس موزائيك گل كلم از DNA تشكيل شده است ـ زنوم در چند وايروس گياهى به صورت قطعاتى در اجسام مجزا وجود دارد ـ به اين گروه اصطلاحاً وايروسهاى چند جزئى نام نهاده اند . شناسائى علايهم ناشى از وايروس هاى نباتى در ميزبان : آلوده شدن نباتيات به امراض وايرو ايرسى معمولاً بوسيله ساييدن مستقيهم مايع آلوده بر سطح بر گَ انجام ميشود ـ در اين حالت بايد ديواره حجروى حجره هاى نباتى به طريقى

چاره شود تا ورود وايروسها را مساعد سازد ، در محل ورود به برگ تغيير شكل حاصل ميشود . علايهم ظاهر شده بر
 نيز ممكن است آلودگى وايروسى را به صورت تغيير رنگى ظاهر كند ـ مثلاً در لاله و شب بوى آلوده بخشى از گلبرگما سفيد ميشود .

ظهور علايم امراض وايروسى نه تنها به وايروس و ميزبان ، بلكه به عوامل محيطى و غذاى گياه نيز بستگى دارد . چون اكثر وايروسهاى گَاهى علايمى تقريباً همانند در گَياه ظاهر ميسازند ، بنابرين تشخيص آنها از روى علايه كار دشوارى است ، در اين نوع موارد به خواص ذاتى آنها مانند خواص هستالوزى نوع اسيد نوكلئيك و توجه

گَروپ های وايروسهای نباتى:

 هاى به شرح زير هستند - وايروسهاى ميله ایى يا رشته ایى

- وايروسهاى ايزومتريى
- وايروسهاى باسيلى شكل
- ويروئيد ها كه بيمارى زا هايى شبيه وايروسها هستند كه در ميزبان خود نوكلئويروتين توليد نميكنند و يروئيد غده دوكى كچالو بيش از ساير عوامل امراض اين گروپ مطالعه شده است .

كشت وايروسهاى نباتى :
براى كشت و ازدياد وايروسهاى گیاهى معمولاً از ميزبانهايى استفاده ميشود كه اولاً وايروس در آنها بصورت فراگير در آيد . ثانياً قدرت تكثير وايروس در گياه زياد باشد . حجره گياهى به علت دارا بودن ديوار سخت سلولوز نسبت به اكثر وايروسها غير قابل نفوذ است • براى اين منظور بايد ديوار حجروى خراش داد ، اين عمل با استفاده از مواد خراش دهنده الى مانند پودر كربوراندم صورت ميگيرد .
 گراد و رطوبت و نور كافى ، نگگهدارى ميكنند . براى كشت وايروسها از قطعات جدا شده نباتى و يا از مجموعه حجره هاى كه بطور نا منظم رشد يافته اند (نسج پينه ایى يا كالوس) استفاده ميشود . چون وايروس قادر به زيستن در نسج

مريستمى نبات نيست با جدا كردن قطعه ای از مريستم گياهى كه مشكوك به آلودگى است و كشت آن در محيط غذائى ميتوان گياه جديد عارى از ويروس تهيه كرد . صفات الختصاصى آلودگَى وايروسها نباتى :
از صفات آلودگى وايروسها نباتى اين است كه گياه در سراسر عمر خود آلوده باقى خواهد ماند. گياهان بر عكس فقاريه ها ، انتى بادى توليد نميكنند و در نتيجه قادر به بى اثر كردن وايروسها در بدن خود نيستند . بدين جهت وايروسها تا مدت نا هحدودى در نبات باقى ميمانند و خسارتهاى زيادى خصوصاً به نباتاتيكه از طريق رويشى تكثير مى يابند ، وارد ميكنند . اساساً وايروسها تمام نسج هاى گياهى غير از نسج مريستمى را مورد حمله قرار ميدهند .

اثر ويروس بر مارفولوزى نبات :

شكل ظاهرى گياه بر اثر حمله وايروس تغيير ميكند و البته اين تغييرات در عقب تحولاتى است كه در داخل
گياه بوقوع مييوندد . علايمى كه ظهور ميكنند ، بر حسب نوع ميزبان ، مدت پس از آلودگى ، نزاد
شكل я-r
ويروس و شرايط محيطى فرق ميكند .
شديدترين اثر وايروسهاى گياهان ، كشتن حجرات است ، قطر زخمهاى موضعى كه در
نتيجه نكروز شدن نسج در برگ بوجود ميآيند ، به نوع وايروس و نوع گياه و شرايط محيط بستگى دارد ـ مرگ بعضى از اندام گییاه و يا مرگ گَياه بطور كلى در برخى امراض وايروسى ، متداول است . اثر بر شكل و نحوه رشد آن :
بيشتر وايروسها رشد ميزبان را كم ميكند ، ولى در بعضى حالات باعث رشد غير عادى آن
ميشوند . برگّا بر اثر حمله وايروس تغيير شكل ميدهند . توليد گل و دانه نيز در نباتات آلوده
 كاهش مى يابد. اثر وايروس بر كاهش ميزان محصول كاملاً نمايان است . (- اثر بر تغيير نبات :

از علايهم اوليه آلودگى فراگير وايروسى در اكثر نباتات رنگ شده
رگبرگّا در جوان ترين برگّاست و برگَا پس از رشد ، حالت موزائيكى يا ابلقى پيدا كرده و يا زرد ميشوند . بسيارى از وايروسها مولد موزائيكَ بر رنگَ كَلما اثر ميگذارند . شكل

「-اثر وايروس بر فيزيولورى نبات ميزبان :

- بيشتر فرانيد هاى فيزيولوزيى تحت تاثير وايورس قرار ميگيرند . مقدار نايتروجن به صورت آمونيم و

همحخنين فاسفور به صورت تركيبات نوكلئيك اسيد در كياه تنباكو آلوده افزايش مى يابد .

- شدت تنفسى نباتات آلوده معمولاً افزايش مى يابد و كاهى تا •هـ\% بيش از گياه سالهم ميشود ـ شدت تنفس نبات بر اثر وايروسهايى كه علايم شديدى از خود نشان ميدهند ، زيادتر است و هر كاه علايمه خفيف باشند

، افزايش در تنفس احساس نميشود .

- در برى گياهان آلوده به وايووس ها مواد زردى ، مقدار زياد كلوكوز ، فروكتوز و ساكاروز جمع ميشوند ، ظاهراً علت اساسى تجمع مواد قندى ايجاد مقاومت در دمبرگَ هنگام انتقال مواد است .

وِايروسها و سرطان :

هنگاميكه سلول ها تحت شرايط كنترول نشده تكثر ميكنند. نسج اضافه حاصل را تومر مينامند ، تومر سرطانى را تومر خبيسه (Malignant tumor) مينامند و و تومر غير سرطانى را تومر سليهd (Benign tumor) نامند . بطور, كلى ، تومر ها را با اضافه كردن پسوند oma به نام نسجى كه تومر از آن بوجود آمده است نامخذارى

 بطور سريع تكثير مى يابند . اغلب مريضانى كه از سرطان جان ميسيارند در اثر بيدايش تومر اوليه نمى ميرند بلكه در نتيجه متاستاث (Matastasis) كه انتشار سرطان به ساير نواحى بدن ميباشد مى ميرند. رابط بين سرطانها و
 بعضى از واييوسها و اكثر ذرات وايروسى حجرات را آلوده ميسازند ، بدون آنكه سرطان ايجاد كنند . ثانياً سرطان
 تبديل شدن سلول هاى سالم به سلول هاى سرطانى :
تقريباً هر عاملى كه بتواند مواد جنيتكى حجره را تغيير دهد قادر است سلول هايلى طبيعى را به سلولماى سرطانى تبديل سازد مانند مواد كيمياوى ، اشعأ هر انرثى ، وايروس هاى مولد سرطان در حيوانات وايروسهاى سرطان زا (Oncogenic) مينامند .

فصل چهارم

فنجى ها مانند باكتريا در عالم نباتات طبقه بندى گرديده اند اما از آردر هاى نباتات عالى نسبت نداشتن
عروق و كلروفيل فرق دارند ، چون كلروفيل ندارند لذا قادر به ساختن غذا نميباشند از جانب ديگَر نسبت به باكتريا بزر گَتر بوده و ساختمان مغلق دارند . فنجى هاى حقيقى عبارت از گَلسنگ ها ، سمارق ها ، پوینک ها و Yeast يا خميرمايه ميباشند . چون اكثر پوپنک ها و Yeast ها باعث مريضى هاى گوناگون ميگردند لذا ما آن ها را مطالعه قرار دهيم ، مريضى هاى فنجوى بنام Mycosis و مطالعه آن ها Medical mycology ياد ميشود . فنجى ها براى هر مملكت از نتاه اقتصادى داراى اهميت خاص ميباشد زيرا ساليانه مقدار زياد چوب ، كتان ، پپنبه و غيره را مورد حمله قر ار داده و به اقتصاد مملكت خسارات جبران ناپذيرى وارد مينمايند .

:اهميت فنجى ها در زندتى بشر :

هزاران سال است كه انسان به طور ناخودآكاه با فنجى ها سر و كار دارد و به اهميت آن پی برده است گرچه فقط • • זال از شروع مطالعه اساسى بر روى فنجى ها ميگذرد ليكن در اين مدت علم ميكروبيولوزى چشرفت چششم گيرى داشته است فنجى ها بطور مستقيم و غير مستقيهم در زندگى بشر دخالت دارند و باعث ضرر و زيان يا استفاده بشر ميشوند . قارج ها عوامل زنده اى هستند كه قادر به تجزيه و تخريب مواد عضوى ميباشند و مواد غذائى يا يارچه ، حتى چرم و بطور كلى كالا هاى مصرفى كه در ساختمان آنها ماده خام عضوى بكار رفته باشد تجزيه و باعث فاسد شدن آنها ميگردد ، اكثر بيماريهاى گياهى و بعضى از امراض انسانى و حيوانى در اثر

فنجى ها ايجاد ميشود ، در صنايع تخميرى حايز اهميت ميباشند ، در دوا سازى از وجود فنجى ها براى تميه تيزاب هاى عضوى ، ويتامين ها و انتى بيوتيك ها استفاده ميشود ، در زراعت فنجى ها از طرفى مضر بوده و ميليونها افغانى خسارت به محصولات زراعتى وارد ميكنند و از طرفى مفيد هستند و باعث حاصلخيزى خاكى ميگردند حتى امروز براى مبارزه با ملخ از اسيور فنجى Metarhizium استفاده ميشود ، در عرض r-r هفته از بين ميرود اسیور اين قارچها قادر اند از نسلى به نسل ديگرى انتقال يابند ، در صنعت اسیور اين فنجى ها را در برنج استريل كشت ميدهند و بصورت پورد خشك پخش ميكنند نكته قابل توجه اين است كه اسپور ها به حشرات مفيد هيحگگَونه صدمه اى نميزنند و فقط ملخها را از بين ميبرند و بالاخره عده از فنجى هاى كلاهدار زير زمين مانند فنجى دكمه ایى و دنبالن كوهى (Agaricus campestris tuber) ارزش غذائى دارند . از طرفى به علت ساختمان سلولى و توليد مثل سريع ، قارج ها مورد توجه سيتولوزيست ها ، بيوشيميست ها ،

تغذيه و طرز زندگى فنجى ها : فنجى ها فاقد كلروفيل ميباشند بنابرين نميتوانند مستقيماً كاربن را از هوا
جذب كرده و عمل فتوسنتز انجام دهند به ناپار كاربن را از اجسامى مثل قندها و يا لاشه حيوانات و گياهان و مواد عضوى بدست ميآورند . بعضى ديگَر مواد مورد نياز خود را مستقيماً از موجودات جاندار بدست ميآورند و به همين علت تمام قارج ها نسبت به كاربن هتروتروف (Hetrotroph) ميباشند اصولاً از نظر تغذيه فنجى ها به سه
گروه تقسيهم ميشوند .

ا- فنجى هاى پرازيتى (Parasits) : مواد غذائى مورد نياز خود را از موجودات زنده تامين ميكنند و عموماً مولد بيمارى در نزد گياهان و حيوانات ميباشند . البته برخى از فنجى ها پرازيت مطلق و عده ديگر پرازيت هاى اختيارى ميباشند مانند فنجى مولد برفى (Candida albicans) r- فنجى هاى گندرو (Saprophytes) : مواد غذائى مورد نياز خود را از مواد عضوى بى جان بدست ميآورند و ميتوان آنها را در محيط هاى كشت مصنوعى كشت داد . عمل اين فنجى ها در طبيعت حايز اهميت است ، چون اين موجودات ميتوانند به كمى باكتريا ها مواد عضوى بى جان را تجزيه كنند و بصورت عناصر ساده مثل كاربن ، سلفر ، نايتروجن، فاسفور و غيره به طبيعت باز كردانند .
rـ فنجى هاى همزيست : برخى از فنجى ها با ساير گیاهان و حيوانات زندگى مشتركى تشكيل ميدهند كه بر حسب چچگونگى اجتماع شان بصورت زير مشاهده ميشوند :

- A فتوسنتز را انجام ميدهد وماده عضوى را در اختيار فنجى قرار ميدهد مانند گلسنگ ها كه از اجتماع
فنجى ها و جلبك بوجود آمده است .

B ارتباط و پيوستگى خاصى بين رشته ها قارج و ريشه گياهان عالى در خاك بوجود ميآيد ، اين پيوستگى براى قارج و گیاه مفيد است و بين ميسليوم قارجّ و ريشه گَياه همزيستى متقابل وجود دارد ، در شرايط خاص و بعضى از موارد فنجى بصورت در ميآيد ولى صدمه آن به ميزبان قابل اغماض است ، اگر تعادل حياتى بين فنجى و ريشه ميزبان به هم بخورد ريشه به شدت دچار بيمارى ميگردد . ميكروريز ممكن
است به سه صورت تشكيل شود .
() () ميكوريز خارجى : رشته مايسليوم منحصراً در سطح ريشك ها قرار دارند .
Y) ميكوريز داخلى : در اين حالت رشته هاى ميسليوم به داخل سلولهاى ريشه نفوذ و در آنجا توده
ميسليومى را ميسازد .

٪) ميكوريز داخلى و خارجى : در اين صورت عده اى از رشته هاى فنجى در سطح سلولها و گَروه ديگَر به داخل سلول وارد ميشوند
 زندگى كامنسال مينماند مانند برخى از قارج هاى تريكوميست كه در سيستم هضمى و يا روى
كوتيكول بندپايان (Arthropodes) به سر ميبرند .

بعضى از فنجى ها نسبت به نايتروجن ، اتوتروف و عده نيمه اتوتروف و بعضى هتروتروف ميباشند ، فنجى هاى گَروه اول قادر اند نايتروجن مورد نياز از نيتراتما و آمونياك بدست آورند ، در حاليكه گروه دوم منحصراً نايتروجن را از امونياك بدست ميآروند و گروه سوم قادر نيستند از نايتروجن نيتراتما و امونياك استفاده نمايند و نايتروجن مورد نياز خود را از مواد عضوى نايتروجندار بدست ميآورند ـ در مورد سلفر نيز عده اى فنجى ها اتوتروف (از سولفات ها و سولفور ها) و عده ای ديگر نيمه اتوتروف (از سولفور ها ، گروه سوم از سلفر و مواد عضوى استفاه ميكنند مانند سيستين و سيتئين و غيره .

فنجى ها از نظر نحوهٔ تأمين مواد غذائى مورد نياز با اكثر گياهان تفاوت دارند بطوريكه اگر مواد گلوسيدى در اختيار آنها قرار گيرد با استفاده از منابع تر كيبات عضوى وغيره عضوى نايتروجن دار ميتوانند پروتين هاى مورد

احتياج خود را تهيه نمايند قارچها احتياج مبرم به كاربن ، اكسيجن ، نايتروجن ، سوديهم ، فسفر ، تِاسيهم ، مينيزيمه ، مس ، آهن ، جست و كلسيم دارند . ترتيب تقدم مواد مذكور بر حسب ميزان احتياج و اهميت آنها براى فنجى ها (IKr/V). است

مهمترين منبع كاربن قند ها و نايتروجن مواد عضوى نايتروجنى است ، تركيبات امونيهم و نيتراتها براى فنجى در درجه دوهم اهميت قرار دارد ـ غالب فنجى ها قادر اند ويتامين هاى مورد نياز خود را كه جهت نمو و توليد مثل آنان ضرورت دارد بسازند . برخى از فنجى ها قادر به ساختن ويتامين Hiotin يا و ويتامين 1 يا يا نيستند در هنگام كشت بايد اين مواد را در اخيتار آنها قرار داد برخى از فنجى ها همه چیز خوارند مانند پوپنک سبز و پوپنک سياه ، عده ای از فنجى ها به محيط غذائى خاصى احتياج دارند مانند فنجى هاى پرازيتى اجبارى كه نه فقط براى زندگى كردن احتياج به پروتوپلازم زنده دارند بلكه روى يک نوع يا يك واريته ميزبان به خصوص ميتوانند فعاليت داشته باشند . فنجى ها عموماً براى استفاده از مواد غذائى با ترشح انزايهم هاى از خود مواد غير قابل جذب را تجربه نموده آنها را به صورت قابل جذب در ميآورند . قارچهاى غير هوازى اجبارى شناخته نشده است همچحنين قارچها در برابر فشار اسموس مقاومتر از باكتر يا ها ميباشند و در محلول هاى نمكى و قندى رشد ميكنند . قارچها كمتر از باكتريا ها به نايتروجن نياز دارند و در مورد خواص جذب قند ها يا تخيمر قند ها به صورت Auxanogramme و Zymogramme عمل ميكنند كه در شناسايى آنها استفاده ميشود و براى آَكاهى از اهميت عناصر در حيات قارجّ معمولاً ميسليوم يا اسيور قارج را تجزيه ميكنند .

تركيبات فنجى ها :

كليكوڤن بسيار متغيز ، ا فيصد مواد چربى و 1,2-11,2 فيصد واد معدنى و حتى در فنجى Boletus edulis ميزان مواد یروتينى •r تا • ث فيصد هم ميرسد .

در سال 9 وام فوستر (Foster) مواد مورد نياز فنجى ها را بوسيله تجزيه كيمياوى بدست آورد اين
تجزيه نشان ميدهد كه Vه٪ ميسليوم تازه و هף٪ ميليسوم اسپور قارت ها را آب تشكيل ميدهد ، هף٪ وزن خشك ميسليوم را كاربن ميسازد از اين جهت ميتوان گفت كه كاربن از عناصر لازم و ضرورى براى سلول فنجى است . مقدار نايتروجن بر حسب نوع فنجى بسيار متفاوت است فاسفور ، تتاسيم ، منيز يهم ، كلسيمم، سوديم ، سلفر و آهن نيز در خاكستر ميسليوم و اسيور فنجى ديده ميشود.

ريحارد (Richards) در سال •9ヶام در خاكستر مخمر ها عناصر ديگرى از قبيل آهن ، بيسموت ، باريهم ، منگَنيز ، مس ، روى ، قلعى حتى سرب و نقره مشاهده كرد . براى اثبات اهميت و لزوم اين عناصر به اين طريق عمل ميكنند كه محيطى با تر كيب از همه اين عناصر تهيه ميكنند و فنجى را روى آن محيط كشت ميدهند آنگاه عناصر را يک به يك از محيط حذف كرده و تغييرات رشد فنجى را يادداشت ميكنند . رولن اول بار اين طريقه را براى كشت Aspergillus بكار برد و ثابت كرد كه حذف عناصر مانند فاسفور ، سلفر ، منيزيم ، جست و آهن از محيط كشت قارج رشد آن متوقف شده يا كاهش مى يابد بنابرين هر يك از عناصر لازم نقشى در مراحل و پديده كيمياوى حيات قارج به عهده دارد و اين عناصر را ميتوان به سه گروپ زير تقسيم كرد : I. عناصرى كه در ساختمان ميسليوم فنجى وارد ميشود . r. عناصرى كه در عمل فيزيولوزى اندامهاى فنجى نقش دارند .

٪. عناصرى كه درنقل و انتقال انرزى و فعل و انفعالات انرزى زا و انرزی خواه شركت دارند . پتاسيه (K) : ميزان رشد آسپرزيلويش به مقدار پتاسيم در محيط كشت بستگى دارد و عمل تخمير مخمر ها در مقابل آيونهاى پتاسيهم و امونيهم فعال ميشود كمبود پتاسيمه در محيط كشت آسپر زيلوس نايجر (A.Niger) سبب ميشود كه فنجى مقدار بيشترى اسيد اگزاليگ تر كيب نمايد. استين برگ (Steinberg) ثابت كرد كه در محيط كشت آسپرزيليوس نايجر ، سوديم ميتواند جانشن يتاسيم گردد. .

فاسفور و منيزيه (P و Mg) : وزن ميسليوم توليد شده با مقدار منيزيم موجود در محيط نسبت مستقيم دارد در محيط فاقد منيزيم در رشد به كندى انجام ميگيرد ولى اگر مقدار آن از • ملى گرام تجاور نمايد از رشد فنجى ها جلوگيرى مينمايد . منيزيهم علاوه بر رشد فنجى ها در توليد سيور و تنفس نيز موثر است و علاوه بر Mg براى رشد فنجى فاسفور نيز لازم ميباشد . ثابت شده كه براى هر آيون Mg در حدود غّ آيون فسفات مورد نياز ميباشد .

سوديهم و كلسيم (Na و Ca) : اثر كلسيهم و سوديم در رشد و تنفس استزڭيلوس به نسبت آن دو در محيط كشت بستگى دارد ـ اگر نسبت Na/Ca=19/1 باشد شدت تنغس به حد اكثر ميرسد در صورتى كه اگر اين نسبت $4 / 1$ باشد رشد فاسفور بهتر صورت ميگيرد .

آهن (Fe) : آهن براى رشد همه فنجى ها ضرورى است ولى وجود آهن به تنهائى در رشد فنجى تاثير چندانى ندراد بلكه بايد عناصر لازم ديگَر نيز همراه آهن در محيط موجود باشد چون انزايم در وجود انزايهم هاى

آهن مانند كاتالاز ، سيتوكرومها ، سيتوكروم ، اكسيداز و غيره در فنجى ها ثابت شده و بنابرين ميتوان نتيجه گرفت
كه آهن عنصرى لازم براى رشد فنجى ها ميباشد .

جست (Zn) : جست نيز براى رشد فنجى لازم است و آيون Zn انزايه هاى اينولاز و دى پيتيداز را فعال ميكند . مقدار اسيد فورماريى توليد شده بوسيله فنجى ريزوپوس Rhizopus با مقدار Zn در محيط كشت بستگى دارد به اين معنى كه اگر غلظت جست در محيط كشت 1,2 ميلى گرام در هر ليتر باشد مقدار اسيد فوماريیى توليد شده حد اكثر است در صورتيكه كه اگر بر غلظت جست افزوده شود رشد فنجى بهتر گشته ولى از ميزان اسيد كاسته ميشود .
مس (Cu) : مس در رشد فنجى ها بخصوص ريزويوس موثر ميباشد با اين كه بسيارى از تر كيبات فنجى كش واجد مس ميباشند بنابرين اهميت و عمل اين عصنر بر حسب غلظت آن فرق ميكند . كلورين (Cl) : اين عصنر در فنجى ها صورت تركيب انتى بيوتيكى بنام كلرامفنيكل . ديده ميشود Chloramphenicol

به نظر ميرسد كه فلزات لازم در ساختمان ميسليوم فنجى كمتر وارد شده و بيشتر نقش حياتى را عمده دار ميباشند با وجود آن كه بعضى از آنما در تر كيبات عضوى پايدار وارد شده اند ولى اكثراً بصورت آيون درآمده و نقش فعال كننده را در فعل و انفعالات انزايمى دارا ميباشند .

اثر عوامل بيولوزيكى و فيزيكى در انتشار فنجى ها :

قارچچا قادر اند حيوانات ، گياهان و زمين را براى رويش خود انتخاب نمايند و بنابرين به سه گروه زئوفيل (Zoophiles) ، فايتوفيل (Phytophiles) و جيوفيل (Geophiles) تقسيهم ميشوند . به علاوه ميزان حرارت ، درجه اسيدى محيط در انتشار فنجى ها اثر كلى دارد اكثر فنجى ها در حرارتى بين صفر تا هّ درجه سليسيوس نمو ميكنند گرچه درجه حرارت مناسب براى رويش آنان بين •ץ تا •r درجه است ولى بعضى از آنها
 كاريوفير خود را ميسازد . به علاوه درجه حرارت خاك نيز در رويش فنجى ها تاثير بسزائى دارد گرچهه حرارت جو عامل اصلى و اساسى به شمار ميآيد ، فنجى ها بر خلاف باكتريا ها محيط هاى اسيدى را براى نمو خود انتخاب ميكنند محيط مناسب براى رشد فنجى PH=6 ميباشد . فنجى ها بر خلاف گياهان عالى به نور احتياج ندارند ولى عده اى فنجى ها براى انتشار و پخش سیور نياز به نور دارند و روشهاى مختلفى براى اين كار دارند ؛ بعضى از فنجى ها مانند پايلوبلوس (Pilobulus) و فنجى پمنى (Coprinus) اسپور خود را بطرف نور پرتاب

ميكند (فتوتروييسم مثبت) اغلب فنجى هاى كلاهدار به زمين هاى سليكاتى و آهكى گرايش خاصى نشان ميدهند . فنجى هاى گزوروفيل (Xerophiles) در رطوبت نسبى ها الى •r درجه فيصد رشد ميكند در صورتيكه بعضى از فنجى ها در رطوبتهاى • + الى • ث فيصد به خوبى رشد نميكنند . بايد متذكر شويه كه كمبود رطوبت باعث كاهش رشد فنجى ميشود اما آب زياد از حد نيز در زندگى فنجى ها اثر سوء دارد و در فصولى كه باران ميبارد كاهى تعداد زيادى از فنجى ها كلاهدار معدوم ميگردند ـ از اينكه موضوع فنجى ها خيلى وسيع است به معرفى پوپنک و خميرمايه مييردازيمه :

: (Molds) (

پوپنکى ها از رشته هاى طويل ساخته شده و حجرات شان در هر دو انجام باهم, وصل گرديده رشته ها بنام (ياد ميگردد . بسيارى حجرات پوپنک ها داراى ديوار هاى متقاطع در هايفا بوده كه بر هايفا را به حجرات مختلف منقسم مينمايد و هر حجره داراى هسته ميباشد . اين قسم ترتيب را در حجرات پوپنک ها بنام ياد مينمايند . در يک كلاس فنجى ها رشته ها داراى هسته نبوده و مانند يى حجره بظهور Septatehypha ميرسند كه داراى تعداد زياد هسته ها ميباشد. اين نوع ساختمان هاى را بنام Coeno cytic hypha ياد مينمايند . بزرگى و جسامت حجراتى كه هايفا را تشكيل ميدهند در پوپنک هاى مختلف فرق داشته كه بزر گترين آن داراى قطر • (-× مايكرون بوده كوچكترين آن ها داراى قطر يك مايكرون ميباشد . هايفا بسيار شكننده بوده و در اثر تماس به رشته هاى كوچگى هايفا توته ميگردد . مجموعه رشته هاى هايفا را بنام Mycelium ياد گرديده كه بدون مايكروسكوپ قابل ديد ميباشد Mycelium به شكل يی توته پنبه يا لكه ابر ماند به نظر ميرسد . پوينک ها داراى الوان مختلف از قبيل سفيد ، سياه ، زرد ، آبى ، سبز و غيره بوده كه به شكل يودر يا گرد به نظر ميرسد . اين نباتات عموماً بالاى نان خشك ، ميوه ها و غير بظهور ميرسد . جهت روئيدن خود به رطوبت ،
 ميرويند ، اما بسيارى آن بدرجه كمتر از درجه متذكره ميرويند . بصورت عموم يک محيط گرم و مرطوب نشو و نماى پوپنک ها را بسرعت بخشيده از همين جهت است كه هنگگام تابستان پوینک ها بالاى نان ميوه جات بظمور ميرسد ، پوینک ها در محيطى كه مقدار زياد قند ها و كاربوهايدريت ها موجود باشد روئيده و در دحيط نسبتاً تيزابى نيز ميرويند ، برخلاف باكتريا در محيط تيزابى روئيده
نميتواند . (

تشكيل سپپر در پوپنکک ها :

دو قسم سيور ها در پوينک ها تشكيل ميگَردد يكى زوجى و ديگر غير زوجى هر دو قسم سيور توسط
عمليه فيوثن دو حجره كه با هم از حيث مارفولوزى شباهت داشته و يا با هم اختلاف داشته باشد صورت ميگيرد مقصد ما از شباهت مارفولوجيكى حجرات مذكر و مونث ميباشد كه عموماً توسط علامات مثبت و منفى ارايه

ميگردد) . سيور هاى غير زوجى توسط حجرات مختلف الجنس اجرا گرديده اما عمليه فيورن صورت نميگيرد. فنجى ها تكثر شان زوجى و غير زوجى ميباشد بنام فنجى هاى مكمل Perfect fangi ياد ميشوند ،

درين گروپ Ascomycetes ، Phycomycetes و Basidiomycetes شامل اند .
تكثر سپور ها توسط تكثر زوجى :

مهمه ترين انواع Phycomycetes عبارت از Mucor و Rhizopus ميباشد . سيور اين يوينك ها
بنام Zygospore ياد ميگردد و زوجى ميباشد كه توسط نزديك شدن دو رشته مشابه يا مختلف عين يك
نباتات صورت ميگيرد .

 در اين گروپ بزرگ تمام فنجى هاى مضر شامل ميباشد . اين فنجى تكثير غير زوجى داشته كه در اثر آن سيور هاى غير زوجى توليد ميگَردد ـ اين فنجى ها بنام دئى Imperfectifangi يا فنجى هاى نامكمل و بعضاً Hyphomycetes نيز ياد ميگردند .

شكل H-1 Y
. اسپورى است كه در نتيجه تقسيهم و تكامل هسته اسكس به روش ميوز بوجود مياً : Ascospore

اقسام مختلف پֶونَك ها :

درين جمله پوینک ها آبى پوپنك هاى ميوه شامل بوده كه پوپنك نان را بحيث نماينده مطالعه ميكنيه :
: Rhizopus nigricans - Bread mold) ()
اين پوينک ها عموماً برنگ هاى سياه و سبز بالاى نان و ديگر مواد غذائى ديده شده و از مهم ترين اقسام پوپنک ها ميباشد . اين پوپ̈ک بعد از جوانه زدن سپور ها هايفى منشعب را تشكيل داده كه از آن سيور انجياى ساقه دار نمو ميكند . اين پوينكى ها داراى سيور هاى غير زوجى بوده و سيورانجيا عموماً به شكل دسته جمعى بالاى يك هايفاى مشخص و معين بظهور ميرسد كه بنام Sporangiophore ياد ميگردد . يی گروپ سپورانجيا توسط يك تعداد هايفاى كوتاه و ريشه مانند كه Rhizoid ناميده ميشود احاطه گرديده است كه توسط
آن ها آب و مواد غذائى جذب ميگردد .

زمانيكه پوپنک پخته شده يعنى به مرحله پختگى رسيده سپورانجيو فور بزرگ گرییه و تشكيل سپور انجيه را مينمايد كه مواد غذائى - سايتوپازم و هسته در داخل آن گرديده و اسپورانجيم شكل گنبد مانند را بخود ميگيرد ، واكيول ها به شكل هموار در آمده و يكديگر مخلوط ميگردند . بعداً يكى ديوار تشكيل ميشود كه سيورانجيهم را به دو ناحيه منقسيه ميسازد . ناحيه خارجى و ناحيه داخلى . ناحيه خارجى يك ناحيه ای است كه در آن سيور ها تجمع نموده و ناحيه داخلى يكى ناحيه عقيم ميباشد و بنام Columella ياد ميگردد ـ رشته هاى كه سيور انجيور فور ها را باهم وصل مينمايد بنام Stolon ياد مينمايند . پوينّك نان يغانه پوپֵكى است كه غذاى خود را از انساج مواد حيه و غير حيه بدست آورده ميتواند ، در لابراتوار بالاى نان يا كدام قسم مواد غذائى ديخر روئيده كه غذا خود را توسط عمل انزايم ها بدست ميآرد . طوريكه انزايم ها توسط آن در داخل مواد غذائى ترشح گرديده غذاى بعد از منحل ساختن اخذ ميدارد اين ها فنجى هاى بسيارمضر و تباه كننده سبز يجات و ميوه جات مانند كچالو شيرين Sweet potu tase - بادنجان رومى ، خربوزه ، شفتالو و آلوبالو و غيره ميباشند .

طبقه بندى چوپنكى ها :

علماى تكسانومى و بوتانى در مورد طبقه بندى پوپنک ها نظريات مختلف دارند به آن همر پوپنک را به پنج
كالاس زير تقسيمه نموده اند :

Archimycetes .I

Phycomycetes .r

Ascomycetes .r
 Basidiomycetes .r

 : Archimycetes

يوينكهاى اين صنف نهايت سابقه و ابتدائى بوده ، مايسليه آن انكشاف ضعيف نموده است و يا اصلاًا اين
 ميباشد . در بضضى انواع حجرات انكشافى متحد شده كه در آنها هسته به مشاهده رسيده است . يوينك مذكور چندين صد نوع داشته ، در آب حيات بسر ميبرند . نماينده هاى زياد شان در خاك نيز

طور هرازيتى بالاى الجى ها ، ووينك هاى ديگر و حتى نباتات عالى زنده گى مينمايند ، مثلاً Olpidium brassicae نهالى هاى كرم و ديگر سبزيهاى مربوط فاميل Brassicaceae را پرازيتى ميننمايند و عامل مرض سياه لنگى در نباتات ميشود . اتر قسمت هاى آخرى ريشه نباتات مصاب و مبتلا بمرض
ديده شود رنگ سياه داشته و متعاقباً از بين ميروند .

نمايندة ديگر اين يوينك عبارت از Synchtrium endobioticum ميباشد كه عامل مرض سرطان
در كچالو Solanumtuberosum ميباشد . مرض سرطان كحالو از جمله خطرناك ترين امراض قرانطينى
محسوب شده است .

براى اينكه كحالو ر از مرض مذكور نجات داده باشند ، قبل از بذر كحالو و خاك مزرعه را توسط ادويه
ك كلرويكرين معالجه مينمايند

:Phycomycetes

يوينّك مذكور مانند يوپنک صنف اولى ارتباط به كَروپ ابتدائى داشته ، مايسليم شان متكاملتر اند و هسته
هاى Haploid اند ؛ ولى زايگوت Diploid ميباشد .
همم در آب و هم در خاى حيات به سر ميبرند . روى همين محلوظ تكثر در اينما به
طريقه هاى مختلف صورت ميگييد . اين پوينك ها چندين صد نوع داشته و بها دو سب كلاس زير تقسيم

نماينده سب كلاس Oomycetidae پوپنكى بنام Saprolegnia بوده و وسيعاً انتشار يافته است .
 اجسام مرده حشرات در آب زندگى دارد و همحچنان به شكل پرازيت نيز ميتواند حيات بسر برد و باعث مرگ ماهيان

تكثر زوجى در اينها توسط تشكيل زايگوسيور و يا ايزوگمى صورت ميگيرد . تكثر غير زوجى توسط سيور
ها انجام مييذيرد .
نماينده صنف Phycomycetes كه در زمـــــــين حيات بســــــر ميبرد عبارت است از Peronosporales داشته ، مشتمل از قارع هاى یرازيتى بوده ، عامل امراض نباتى در زراعت شده و خسارات هنگَفتى را ببار ميآرود .

مرضيكه توسط اين قارשج در كحالو و پياز ببار ميآيد برگما ، ساقه ها و سيبك كچالو
) , را شديداً متضرر ميسازد . (Tuberosum)

در نصف اول قرن نزدهم از امريكا به ارويا انتقال يافته است. از Phytophtora infastans خطرناكترين امراض كحالو در اروپا بوده نه تنها كحالو را خساره مند ميسازد ، بلكه بادنجان رومى از شر آن نيز مصئون مانده نميتواند . براى مبارزه پوپپکى مذكور ، از محلول پاشى بورد’ و استفاده ميكنند . جنس Plasmopara viticola نيز به رديف يا آردر Peronosporales متعلق بوده باعث مرض
ميلديو در تاك هاى انگَورى ميگَردد .

بر گَماى ، نوده هاى نو تشكيل و دانه هاى انگَور را متضرر ساخته ارزش كيفى آن را پائين ميآرود . از اينكه مرض مذكور در حدود بيست فيصد حاصل انگور را پائين ميآورد ضرورى چنداشته ميشود توسط محلول بورد و يا محلول كويراويت

:Zygomycetidae سب كلاس

نماينده مهم اين سب كاس پوپֶنکى است بنام Mucor mucedo و متعلق آردر Mucorales ميباشد . اينها را پوینک سياه نيز گويند . اكثراً سپروفايت ميباشند . يك تعداد شان پرازيت فنجى هاى ديگر را

[^17]اينها عموماً بالاى مواد غذائى ، ميوه جات پخته ، نان هاى مرطوب و مواد فاضله ایى حيوانى به مشاهده رسيده است . پوپينك هذكور عامل امراض در انسانها و حيوانات نيز گرديده و امراض هانند . خرابى قرنيه و امراض جلدى نمونه هاى مههم آن ميباشد Bronchomychosis نماينده ديگر اين پوینک كه اكثراً در خاك مشاهده مشود ، بنام Mucor racemosus ياد ميشود . نوع ديگُر آن عبارت از پوپنک Rhizopus nigricans بوده ، بالایى سبزيها و ميوه جات و همچنان تخميانه در حال نمو به ظهور ميرسد . (سr / ..
: Ascomycetes
اين پوینک در حدود نوع داشته كه يكى آن پرازيتى و متباقى آن سپروفايت ميباشند . اينها را بنام
فنجى خريطه اى نيز ياد كرده اند . كه داراى مايسليم حجروى بوده و از رشته هاى جدار دار (Septate ') ساخته شده اند .

برخى از اين فنجى ها در صنعت و طبابت اهميت زياد دارد ـ عضو تكثرى اينهارا بنام اسكس ياد ميكنند كه
حاوى اسكوسپور ها ميباشد . در حاليكه به غير زوجى توسط كونيديا تكثر مينمايند .

جنس عمده ای اين صنف عبارت از خميرمايه ميباشد كه بعداً از آن بحث خواهد شد. (Oospora) و (Geotrichum) طور كلى در داخل مواد نمو نموده ولى زنجير سيور هاى كه بواسطه قطع شدن هايفاى هوايى تشكيل ميگردد ؛ . ممكن بالاى سطح مواد انكشاف نمايد

نماينده هاى زياد دارد . يكى آنرا بنام Aspirigillus ياد ميكند كه بالاى سبزيجات و غله ها به رنگ
هاى مختلف سبز ، زرد ، نارنجى ، نصوارى ، سياه و يا يوينك هاى خاكسترى ديده ميشود . مايسليه اينها بصورت منشعب و حاوى كونيديوفور هاى يی حجروى ميباشند . كونيديا بالاى هايفاى كه بصورت مدور ميباشد توليد ميشود . تعداد شان فوق العاده زياد بوده ، در تحت مايكروسكوپ منحيث يى كتله رنگه ظاهر ميگردد . اسپر كليس باعث تجزيه مواد پوسيده گرديده و برخى از آنمها مولد مرض ميباشند . مهمترين نماينده آَنها بوده ، قابليت تخمرى مواد قندى را دارا ميباشد . در توليدات سيتريى اسيد از آن كار گَرفته ميشود . تغييرات كيمياوى را بار ميآورد و از همين نگاه در لابراتوار ها جهت تغذيه پوينك ها ، ميتابوليز م و

فعاليت هاى انزايهم ها بكار ميروند . Aspergillus glaucus نيز نوعى از اين پوپنى ميباشد . سيور سبز رنگ داشته ، بالاى ميوه جات كنسرو شده و غله ها به مشاهده ميرسد .

مولد مرض در انسان و حيوانات ميباشد . مرض - Asperigillosis را در پرندگان ببار آورده ، باعث تخريش شش ها ، برانشى ها ، قرنيه ، كانال سمعى ، اعضاى و انساج ميگُردد. Aspergillus و Peincillium ، را بنام پوينگى سبز آبى ياد كرده اند . بطور عموم بالاى ميوه جات از قبيل نارنج ، ليمو Pencillium سيب ، ناى ، همحچان بالاى نان ، پنيرو هم بالاى سبزيها و غله ها ميرويند . مايسليهم شان به داخل مواد نمو نموده ، هايفا هاى مستقيم را به شكل كونيديا فور به طرف بالا انكشاف ميدهد .

اين شاخه ها كه شكل خوشه هاى جاروب مانند را دارند و موازى به يكديگر انكشاف ميكنند . كونيديا ها را به شكل دانه ها در شاخه ها توليد ميكند . سيور به شكل زنجير در قسمت سر واقع شده كه در واقعيت عضو تكثرى يعنى (Ascopore) ميباشد .

نماينده هاى مهم اين پوپنک عبارت اند از : P.notatum ، P.expansumrysogenum و
بوده كه اكثراً براى بدست آوردن انتى بيوتيكى خاندان پنسلين بكار ميرود .

باعث نرم شدن سيب و ناك در ذخيره خانه ها شده ، بالاى مواد فاسد و تجزيه شده نيز
مشاهده ميشود .
(پronilia) () (Neurospora) گَنده شده معمول بوده كونيدياى آن در برخى از انواع گَلابى ، سرخ و نارنجى ميباشد . اين پيپنك ها از نظر وراثت اهميت زياد داشته در لابراتوار ها بيشتر مورد استفاده قرار ميگيرند .
(جرب سيب) مرض است كه از اثر اين پوپنک ها توليد ميشود . مرض متذكره را توسط
. از بين ميبرند Fungcide
: Basidiomycetes
اين پوپنک ها مايسليم منشعب داشته ساختمان تكثرى اينما عبارت از هايفاى پياله مانندى است كه بنام
بسيديه' ياد ميشود ـ عموماً جهار سيور را توليد ميكنند كه كونيديو سپور خوانده ميشود.

[^18]اين سيور ها موقعيكه از بسيديم خارج ميشوند ، توسط باد ، حشرات وغيره از يكى جا به جاى ديگر انتقال
مى يابند در صورتيكه شرايط محيطى مساعد شود سيور ها جوانه زده هايفاى جديد را بميان ميآورند .
اين پوينک در حدود Tilletia tritici نوع دارد . دو نماينده مره آن فاميل هاى ميباشد كه باالترتيب باعث مرض سرخى كندم و سياه قاق جوارى ميشوند .

: Deuteromycetes :

اين پوپنک ها را بنام پوپنک هاى ناقص (Fungi imperfecti) نيز ياد ميكنند . در اين صنف پوپنک هاى شامل اند كه مايسليم شان چندين حجروى ميباشد . تكثر در آنها محض توسط كونيديمبا صورت ميگيرد . در
 نباتات پخته ، كحالو و غره را خساره مند و پزمرده ميسازد .

نباتات تير ماهى را از ريشه فاسد ميسازد و مانع نمو و رشد آنمها ميگَدد . مرض كه بنام انرتكنوز مسمى ميباشد ، خساراتى را به برگما ، ساقه ها و ميوه هاى تاك انگَورى فاصليا و نباتات باغچهٍ ایى وارد ميآورد .

خمير مايه (Yeasts)

خميرمايه ها از جمله اسكوماسيت ها بوده و مانند پوپنك ها ميكروسكوپیى ميباشند ، داراى حجرات جداگانه
بوده كه عموماً شكل بيضوى يا دايروى دارند نسبت به باكتريا به دو دليل فرق دارند .

شكل Budding در خميرمايه

شكل r-r $\}$ צ צr \{: ساختمان داخلى يك حجره خميرمايه

「．خمير مايه ها توسط ميخانيكيت هاى مختلف تكثر مينمايند يعنى توسط عمليه＇Budding تكثر
مينمايند .

خميرمايه ها نظر به پوینک ها ساده و بسيط تر بوده اما نسبت به باكتريا ساختمان پيجيده ترى دارند و مانند پوپپی ها تكثر زوجى و غير زوجى دارند ．تكثر زوجى كه در آن سيور تشكيل ميگردد ، توسط يكجا شدن دو حجره در داخل يك ساختمان خريطه مانند كه Ascus ناميده ميشود صورت ميگيرد ـ زمانى كه سيور هاى به مرحله پخته شدن رسيد اكس كه دارى＾－ا سيور ميباشد دريده و سیور هاى كه از آن خارج ميگردد بنام ياد ميگردد ．هر اسكوسيور در شرايط مناسب جوانه زده و يك حجره جديد سيست تشكيل Ascospore

تكثر خميرمايه ها ：

تكثر در خميرمايه حقيقى＇همم به صورت Vegetative و هم توسط تشكيل Asco spore صورت
Asco spore ميگيرد ．ديگر اشكال خميرمايه به شمول فنجى هاى كه مشابهت با خميرمايه دارند

تكثر نموئى（Vegatative Reproduction）：

بصورت نموئى خميرمايه به دو طريقه يعنى توسط جوانه زدن و يا انقسام（ Fission ）تكثر ميكند．
در جوانه زدن يكى برآمدگى كوچگى در يیى جهت حجره مادرى توليد ميگردد ، هسته انقسام ميكند ．يكى توته آن به داخل اين جوانه عبور نموده سپس جوانه بزر گی شده و به اثر يى فشار انقباض از حجره مادرى جدا ميگردد ． در ابتدا اين جوانه جديد داراى ديوار حجروى نبوده ولى به زودى ديوار مذكور انكشاف ميكند ．حجره

دخترى امكان دارد از حجره مادرى جدا شود و يا اينكه براى مدتى با حجره مادرى يكجا باقى خواهد ماند． انقسام حجروى به شكل（ Fission ）كه در جنس（ Schizo sacharomyces ）به ملاحظه

ميرسد ، مشابهت زياد با تقسيمات حجروى در باكتر يا دارد زمانيكه جسامت حجره به يك حد معين ميرسد از وسط به دو حصه تقسيم شده ．ديوار حجروى جديد در بين أنها تشكيل و دو حجره از هم جدا ميشود ．

$$
\begin{aligned}
& \text { 「 خميرمايه حقيقى توليد (Asco spores) , ا ميكند ، روى اين ملحوظ بنام خميرمايه حقيقى ياد ميشود }
\end{aligned}
$$

تشكيل يا توليد سپپر :

بصورت عموم خميرمايه ها حقيقى توليد Asco spore , ا نموده ، به داخل حجره اين نوع خميرمايه يكتعداد سيور ها تشكيل ميشوند حجره ای كه حاوى اين سپپر هاست بنام Ascus يا Sac و خود سيور ها بنام . ياد ميگردند Asco spore
تشكيل يا توليد سيور ها در خميرمايه حقيقى مانند فنجى هاى Ascomycetes بر اساس دوران حياتى خميرمايه طوريست كه وقفه هاى تركيب دو هسته و تشكيل هسته ای كه داراى كروموزوم هاى جوره اى اند بوقوع مييبيندد . تر كيب اين دو هسته كروموزوم دو حجره ای كه ابتدا از همديگر جدا بودند با همر ييوست شده هسته اى كه به اثر تر كيب شان تشكيل ميگردد داراى 2n كروموزوم ميباشد كه بنام حجره (Diploid) ياد ميگردد .

در مرحله بعدى اين تقسيمات كه يك مرحله از تشكل سيور ها را تشكيل ميدهد . تعداد كروموزوم هاى كه به هر حجره دخترى ميرسد نصف تعداد اصلى آن ميباشد . بنابر آن هر سيور نصف تعداد اصلى كروموزوم ها را دارا است .

اختلاف دوران حيات در انواع مختلف خميرمايه تابع تشكل حجرات (Diploid و Haploid) است كه
به اساس تيپ هاى يا اشكال عمومى ذيل را در دوران حياتى خميرمايه ميتوان تفريق كرد . درين تيپ زايگوتيكه داراى هسته Diploid و به دو هسته جديد كه هر يی داراى 2n كروموزوم اند تقسيهم ميگردد . حجرات دخترى كه به اثر اين عمليه تشكيل ميگردد نيز داراى كروموزوم هاى Diploid بوده و عمليه مذكور را باز ههم به صورت نا محدود تكرار ميكند كه اين مرحله تقسيمات بنام Phase يا مرحله ياد ميگردد . اين تسلسل نسل بصورت Diploid تا زمانى ادامه مى يابد كه كدام محرك براى Diploid Haploid تشكيل سپور ها توليد گردد . در اين صورت تشكيل هسته هاى را ميكند كه داراى كروموزم هاى ميباشند و هر يی تشكيل يى Asco spore را ميكند . Asco spore مذكور در بين حجره مادرى كه را ميسازد باقى ميماند . در حالت عادى هر يک از اين سپور يک حجره خميرمايه را كه داراى هسته . است تشكيل ميدهند Haploid

حجرات دخترى جديد كه به اثر انقسام بوجود ميآيند ، باز هم داراى هسته Haploid بوده و اين
تقسيمات بصورت نا محدود دوباره تكرار ميگَردد . تحت عمل محر كين خاص ، بعضى از حجرات مذكور

شكل ه-
ديياوهيالاتيك . B) انواع هياتيكى

بصورت جوره ای با هم يكجا شده هسته شان تركيب ميگَددد و زايگوت را كه داراى هسته Diploid است
ميسازند و به اين ترتيب دوران حيات شان تكميل ميگردد .

سلول هاى كه به اثر تركيب شان زايگوت ساخته ميشود ، بنام Gamete ها ياد شده و تركيب شان عبارت از يك عمليه زوجى ساده است .

اين تيپ با تيپ قبلى فرق دارد زيرا در آن مرحله Haploid در تقسيمات تقريباً از بين ميرود. سيور هاى . Diploid ميباشند Aا هم بصورت جوره الى يكجا گرديده و سلولهاى نموئى دايماً Ascus

112

طبقه بندى خمير مايه ها :

بطور عموم پنج فاميل عمده آن قابل ياد آورى است :

:Sacccharom ycetaceae فاميل

خميرمايه هاى اين فاميل عبارت از خميرمايه هاى حقيقى بوده و اكثر انواع آن داراى اهميت ميباشند و به
ههار فاميل و پانزده جنس تقسيهم گرديده است .

اشكال نمويى اين خميرمايه قابل تشخيص بوده داراى اشكال متنوع فنرى ، بيضوى ، طويل و يا استوانه

اكثر شان بواسطه جوانه زدن انقسام مينمايند . بعضى از آنها توسط Transvers fission انقسام
ميكند. همحچنان تعدادى از انواع شان به هر دو طريقه و يا بصورت بين البينى تكثر نمايند . در بعضى انواع از خميرمايه ها كه توليد Mycelium را ميكند ، جوانه هاى تشكيل ميگردد كه وظيفه سيور را اجرا نموده و بنام ' Blasto spore و يا Conidia ياد ميشود . در اين فاميل انواع خميرمايه به اساس دوران حياتى خويش از هم فرق ميشوند كه در جريان آن يكجا شدن سلولها و بوجود آمدن حجرات نمويى (Haploid) و (Daploid) صورت ميگيرد . يك شكل ديگَرى در دوران حياتى خميرمايه بوجود آمده و آن اين است كه در بعضى حالات دو حجره گاميت كه با هم يكجا ميشوند داراى جسامت مساوى بوده و يكجا شدن دو حجره را كه داراى عين جسامت ميباشد بنام Isogamous ياد ميگَردد ـ در حاليكه در بعضى اشكال ديگَى خميرمايه سلولهاى كه با هم يكجا ميشوند از لحاظ جسامت مساوى نبوده يكى كوچى و ديگُى بزرگى ميباشند كه در اين صورت بنام خميرمايه . ياد ميشود Hetero gamous

بخاطر سرعت انقسام و شرايطى كه در آن خميرمايه با همر يكجا ميگردد Crossing صورت ميگيرد . علماى جنيتيك خميرمايه را ماده ارزنده جهت مطالعات درسى ميدانند .

يكى از جنس هاى بزرگ و عمده اى خميرمايه به شمار ميرود . اكثراً داراى Saccharomyces
حجرات نمويى Diploid هستند .

انواع اين خميرمايه كه باعث توليد افرازات الكولى ميگردد ، در صنايع بيرسازى ، نان پزى ، مشروب سازى
در كار خانه هاى تقطير و در توليد الكول تجارتى از آن استفاده ميشود . و به خاطر اهميت اقتصادى شان بيشتر . مورد مطالعه قرار ميگيرند

خميرمايه معمولى در نان پزى استعمال ميگردد . داراى حجرات كروى و يا بيضوى بوده به نام

جنس Saccharomyces بر اساس قدرت توليد قند هاى متنوع ، توليد الكول و گازات به سب گروپ
ها و انواع متعدد تقسيم ميشوند . تمام انواع شناخته شده ، در اين جنس سه نوع مونوسكرايد (Dextrose ، . Mannase و Levulese

اى با همم يكجا ميشوند كه اين شكل ابتدايى تكثر زوجى را نشان ميدهد .

پانزده نوع آن شناخته شده ولى هيج كدام آن داراى اهميت اقتصادى نميباشد ـ عده اى از انواع شان باعث
توليد فرمنت (انزايمه) ميشوند .
فاميل Rhodotorulaceae:
خصوصيت بارز اين فاميل عبارت از توليد پگمنت رنگَه (سرخ ، نارنجى و زرد) بوده و
. را توليد كرده نميتوانند Ascospore
يكى جنس آن كه بنام Rhodotorula ياد ميشود قابل تذكر بوده و داراى انواعيست كه به آسانى از
هم تفريق نميشوند .

:Cytococaceae فاميل

در اين فاميل گروپ هاى شامل اند كه Asco spore توليد كرده نتوانسته و فاقد ماده رنگًه نيز ميباشند.
انواعى شامل اين فاميل از لحاظ اقتصادى و همحنان از نگاه توليد افرازات داراى اهميت بوده و توانائى توليد
امراضى را در جسم انسان و حيوان دارد .

فاميل مذكور دو سب فاميل داشته كه در سب فاميل اولى Cryptococcoideae انقسام توسط جوانه
زدن بدون تشكيل حجرات طويل و انكشاف Blasto spore صورت ميگيرد.

Pseudo 'ميباشد از سب فاميل اولى نسبت توليد Mycotoroloideae فاميل دومى كه عبارت از

. و سيور هاى غير جنسى فرق ميشود mycellium

جنس Toru lopsis داراى اهميت بيشتر بوده ، بيست و دو نوع دارد . يازده نوع آن از لحاظ توليد افرزات قندى (Dextrose) توليد CO2 و الكول اهميت داشته و با خميرمايه هاى حقيقى شباهت زياد دارد . بطر مثال Torlupsis kefyr در افرازات شير ، يازده نوع ديگُر آن شكل طفيلى داشته باعث توليد امراض درانسانها ميگردد.

فعاليت هاى فيز يولوجيكى پوپنكى ها و خميرمايه ها :

فعاليت فيزيولوجيكى اين موجودات بسيار زياد بوده كه علماى مايكروبيولوجى طبيبان و يا بايو كميست ها طرق زياد استعمال آن را كشف كرده اند مثلاً ساختن ادويه جات ، تيزاب هاى عضوى انزايم هاى همه نتيجه محصولات ميتابوليزمى اين موجودات بوده كه امروز به پيمانه وسيع مورد استعمال ميباشد . بهترين ادويه كه هر كس آنرا ميشاسند پنسيلين كه Penicillium notatum تهيه ميگُردد و همچخنان ساختن پنير توسط عمل
پوپنکك ها بالاى شير صورت ميگيرد.

خميرمايه ها در تخمير شيره ميوه جات جهت ساختن Wine و Beer (آب جو) ساخت الكول از قند ها استعمال ميگَردد . در صورت ساختن الكول از قند يا ميوه جات كه داراى مواد قندى ميباشد كاز كاربن داى اكسايد نيز آزاد ميگردد بر علاوه خميرمايه ها در پختن كيك ، نان و غيره شهرت جهانى دارند و به پيمانه وسيع استعمال ميگردندد . بايد به خاطر داشت خميرمايه ای كه جهت ساختن Wine استعمال ميگردد براى پختن كيكى و غيره مفيد نميباشد . بصورت عموم كفته ميتوانيه كه هر نوع خميرمايه از خود مورد استعمال خاص داشته نميتواند ، يك نوع آن را براى تمام مقاصد استعمال نمائيم چون فنجى ها در طبيعت موجود ميباشند ـ از نقط نظر تجزيه نمودن اجساد مرده حيوانات و نباتات بسيار مفيد و مهم بوده اما بعضى انواع آن براى انسانها نهايت مضر و تباه كننده ميباشد ، زيرا غله جات از قبيل گندم ، جوارى و غيره ضرر رسانيده و خسارات جبران ناهذيرى در اقتصاديات يك مملكت وارد مينمايد . پوپنك ها نيز به نوبه خود مضر بوده پوب ، سامان چرمى و رابرى ، كاغذ ، منسوجات و

[^19]غيره را مورد حمله قرار داده و آن ها را از استفاده باز ميدارد بالاخره پوينك ها و خميرمايه ها باعث بسيارى
امراض انسانى و حيوانات اهلى ميگَردند .

اور گَانيزم هاى پوپپنك مانند كه همراى فنجى هاى حقيقى طبقه بندى نميشنوند :

 انسان ها كرديده اما خوشبختانه توسط انتى بيوتيك ها مانند پنسيلين ، سلفان اسيد ها و و غيره موفقانه از بين برده اند. اسيد هاى و غيره موققانه از بين برده شده اند. ـ مهمترين انواع اين اركانيزم يوينك مانند قرار ذيل اند : : اين موجودات در عدم موجوديت اكسيجن هوا روئيده و نشو نما مينمايند عموماً در دهن اشخاص سالم موجود بوده اما بغضاً باعث توليد ابسس (Abscess) هاى خطرناى غشاى مخاطى دهن ميگردند .
اين موجودات بر خلاف اكتينومايسس ها در موجوديت اكسيجن هوا زيست نموده و باعث
 انسان ميگر دند برعلاوه باعث خرابى استخوان ها نيز ميشوند .
:Streptomyces و Micromonosore
اين ها اجسام يوينگ مانند بوده و باشندكان خاك ميباشند و هم باعث توليد امراض نميكَردند جنس منبع استخراج و استحصال بسيارى انتى بيوتيك ها بوده كه از آن عموماً . Chloramphenical و و غيره بدست ميآيد و Terramycin ، Auromycine ، Streptomycin

خميرمايه ها و يوينك ها عمده كه باعث توليد امراض انسانى ميكر دند به دو دسته تقسيمه ميشوند :

1. آن هاى كه باعث توليد امراض جلدى - امراض موئى و امراض ناخن ها ميگرَردند .
「. آن هائيكه باعث توليد امراض در ديگر اعضاى انسان ميگرددد .

آن هاى كه باعث توليد امراض جلدى - موئى و ناخن ميگرَردد بنام 'Dermutophytes ياد كردريده اين اجسام بالاى موى سر به خوبى نمو كرده و باعث كل شدن سر ميگردد ـ اين مرض كل سارى بوده و از يى

فنجى هاى حقيقى (Eumycetes)

شخص به شخص ديگر سرايت ميكند . ادويه لازمه براى اين مرض همانا استعمال نمودن تنچحرآيودين ، مرهم
سالى سليك اسيد ، محلول رقيق پتاسيمه پرمنگْنيت و بعضى انتى بيوتيك ها ميباشد .
فنجى هاى كه باعث توليد نمودن زخم در انسان ميگردد : فنجى هاى كه مانند Yeast نمو مينمايند ، اركانيزم هاى كه پوپنک ها بظهور ميرسند و بعضى اركانيزم Dimorphic باعث توليد امراض و زخه ها در انسان ها ميگُردند . مريضى كه توسط اين فنجى رخ ميدهد ، در مرحله اول بسيار حقيقت بوده و در مرحله دوم بسيار خطرناك ميگردد حتى باعث مرگ شان ميگردد. .

علايم و آثار مرض اين است كه شخص مريض در مقابل مواد حجروى اين فنحى ها حساسيت حاصل
نموده و اين علايه تشخيص مثبت براى مرض موصوف ميباشد . مثلاً اگر يى مقدار مواد حجروى فنجى به شخص مريض زرق شود در ظرف ^^ ساعت در همان جاى كه مواد حجروى فنجى زرق گرديده شخص موصوف از خود حساسيت نشان ميدهد .
\qquad
\qquad
\qquad

فصل چֶنجم

يروتوزوا از دو كلمه يونانى كه Protos به معنى اولى و Zoo به معنى حيوان كرفته شده و معنى مجموعى آن حيوان اولى يا ابتدايى ميباشد . جسم اين حيوانات عموماً از حجرات واحد تشكيل شده كه اكثراً مايكروسكوبى ميباشند از نقطه نظر بزركى نظر به حيوانات ديحر يروتوزوا دارای خورد ترين جسامت ميباشند اما از حيث تعداد بزر كترين گروپ حيوانات را تشكيل ميدهند ـ پینانچه قبلاً متذكر شديه جسم اين حيوانات از حجره واحد تشكيل كرديده كه تمام فعاليت هاى حياتى توسط همين حجره واحد صورت ميگيرد ، برعكس در حيوانات

چجندين حجروى فعاليت هاى حياتى مختلف مربوط به كروب هاى مختلف حجرات ميباشد . بعضى يروتوزوا داراى ساختمان حجروى ساده و بسيط بوده و همه دارای اعضاى حجروى ميباشد كاند كه اين اعضا بنام اوركانيل ها Organelles مسمى بوده و از نقطه نظر انجام وظيفه فعاليت هاى مشابه به سيستهم اعضاى حيوانات حندين حجروى ميباشد . تا حال در حدود نوع مختلف يروتوزوا شناخته و تشخيص كرديده اين حيوانات در محيط هاى مختلف از قبيل آب هاى شور و شيرين ، اعماق ابحار ، آب هاى ايستاده ، حوض ها ، جوى ها خاك و اجسام عضوى يوسيده زندگى مينمايد بسيارى از اين حيوانات حيات بصورت آزاد

داشته بدين معنى كه درمحيط زيست خود آزادانه زندگى مينمايند عده از آن ها بصورت تنهائى و بعضى بصورت كالونى' حيات بسر ميبرند ، عدهٔ همم در بالاى حيوانات و نباتات و عده در داخل حيوانات و نباتات زيست مينمايند . بسيارى از پروتوزوا ها بحيث مواد غذائى مورد استفاده بعضى حيوانات كوچى قرار ميگيرند بغضى حيوانات

يك سلولى جهت تصفيه و فلتر نمودن معبر بيت الخلا ها ايفا وظيفه مينمايند بر علاوه عده حيوانات يك سلولى باعث امراض مختلف از قبيل پيچج ، ملاريا ، خواب افريقائى ، سالدانه و غيره گرديده كه براى انسان ها بسيار مضر و بضى اوقات مهلكى ميباشد . يروتوزوا از حيث ساختمان و اعضاى حركى خويش به ینج كلاس عمده زير تقسيم ميشوند :

ו. كاس Mastigophora آنهاى كه دارای يك يا چپند عضو قمچچین ميباشند.

 Ciliata آنمهاى كه دارای مويك ها ماريباشند هـ هـ كاس Suctoria آنهاى كه درحالت بلوغ حيوانات ساكن هستند . مشخصات پروتوزوا ها :
I. داراى جسامت ذره بينى بوده بالعموم جسم شان از حجره واحد ساخته شده و بعضى شان بقسم كالونى
زندگى مينمايند .
r. شكل حجره بيضوى ، طولانى و يا كروى بوده كه نظر به محيط و طول عمر تغير ميكند . س. . داراى هسته مشخص بوده كه تعداد آن به يك يا اضافه از آن ميرسد فاقد سيستم اعضا و انساج بوده و . Organelles ميباشند

ث. . حر كت توسط فلاجيل ، پاى هاى كاذب ، ساختمان مويی مانند Cilia صورت ميگيرد . ه. بعضى انواع پروتوزوا ها قادر به تشكيل قشر محافظوى نبوده اما بسيارى آن ها قدرت تشكيل سيور و قشر محافظوى محكم, Cyst ,ا داشته كه در حالات ناكوار زندگى خود را توسط آن ها جهت بقاى

حيات محافظه مينمايند .
\& زندگى به صورت آزاد ، طفيلى و يا به شكل سمبيوز ميباشد .
ط. ط تغ تغيه در پروتوزوا ها به اشكال مختلف ذيل صورت ميگرد :

[^20](a اجسام یروتوزوا وغيره تغذيه مينمايند . (+ F / /)
سيروفايتيك كه بالعموم از مواد منحل عضوى كه درمحيط زيست شان يافت ميشود
تغذيه مينمايند
(c
ادامه حيات توسط فتوسنتز كه در نباتات بسيار عموميت دارد .

8- تكثر غير زوجى توسط عمليه انقسام دو گانه (Multiple fission » ، Binary fission) و و يا عمل جوانه زدن Budding صورت ميگيرد . تكثر زوجى كه در بعضى انواع آن صورت ميگيرد
عموماً توسط امتزاج گميت ها و يا عمليه مزدوج شدن انجام مى يابد .

مارفولوزى پروتوزوا ها :

اين موجودات وحيدالحجروى بوده و بعضى اشكال شان به شكل كالونى ها (Coloniec) ديده ميشوند
كه هر حجره واحد كالونى از يكى حيوان مستقل نمايندگى ميكند .

از حيث شكل اين حيوانات با هم مختلف بوده و داراى شكل كروى ، بيضوى ، طولانى و بعضى شان
هنگام حر كت شكل خود را تغيير ميدهند .

طول حجرات شان از • الى . . بايكرون ميرسد اما بعضى شان داراى طول (الى Y ميلى متر بوده كه بدون ميكروسكوپ مشاهده شده ميتوانند . بصورت عمومى پروتوپازم حيوانات وحيدالحجروى با پروتوپالزم ديگر اجسام حيه يكسان ميباشد . حجرات داراى يیى غشاى نسبتاً سخت و مستحكمم بوده برعالوه داراى پالازما معبران - يكى طبقه خارجى سايتویلازم (Ectoplasn) و يك طبقأ داخلى سايتوپلازم (Endoplasm) ميباشد . در سايتوپلازم يك يا دو هسته مايتو كاندريا (مركز تمام فعاليت هاى انزايمى ميباشد) واكيول هاى غذائى (خاليگاها ايكه در آنما غذا به هضم ميرسد) و يك يا زياده از آن واكيول هاى اطراحيه (كه توسط آنها مواد فاضله و مقدار اضافى آب به خارج طرح ميگَردد) موجود ميباشد . (• / / / پروتوزوا داراى ساختمان هاى حركى و محافظوى غذا نيز ميباشند .

تغذيه در پروتوزوا ها :
اين حيوانات غذا را به شكل جامد توسط سوراخ هاى كه بنام دهن ياد ميشود يا توسط سايتوپلازم خود اخذ مينمايند ، غذا هاى آنما را عموماً باكتريا ، الجى ها و يا پروتوزوا هاى ديگر تشكيل ميدهد . بعد از آنكه غذا توسط

 برخلاف اشكال یرازيتى يروتوزوا غذاى خود را از ميزبان به شكل منحل توسط عمليئ انتشار . اخذ ميدارد (Diffusion)

تنفس :
 اخذ و كاربن داى اكسايد را خارج مينمايد . يك فرق تنفس كه بين بروتوزوا و باكتريا موجود است اينست كهي بعضى باكتريا غير هوازى بوده و در موجوديت اكسيجن هوا زندگى كرده نميتوانند اما تمام يروتوزوا ها جهت اديد ادامه حيات خود به اكسيجن هوا ضرورت دارند . تكثر :
 مساوى برخلاف باكتريا طولاً تقسيمه ميگَردد . اين انقسام توسط Binary fission صورت ميگيرد . عمليهُ . نيز در بضضى انواع يروتوزوا صورت ميگيرد Budding در تكثر زوجى دو حجره با هم يكجا كَردييده و بعد از تبادل مواد هستوى تكثر زيرّ زوجى صورت ميكيرد كه توسط عمليه مزدوج شدن (Canjucation) اجرا ميگرددد . يروتوزواى كه باعث توليد ملاريا ميگر دد داراى دورة تكثر مغلق و ييحيده بوده كه در آن حجره بصورت غير زوجى در بدن حيوان و بصور ت زوجى در بدن پشه تكثر مينمايد .
تشكيل قشر محافظوى ضخيم (Cyst) : تحت بضضى شرايط ناكَوار بسيارى پروتوزوا از خواد يى نوع مواد ترشح مينمايند كه اطراف حجره را احاطه نموده و به حيث يى قشر محافظوى مستحكمم (Cyst) ايفاى

 مناسب و مساعد گردد سيست از بين رفته و حيوان دوباره به فعاليت هاى حياتى خود آغاز مينمايد .

بعضى حيوانات به قسم Symbiosis' زندگى مينمايند . مثلاً اكر در دوره كوپه پروتوزوا موجود نباشد قطعات چوب , ا هضم نميتواند يعنى اگر از روده كوپه پروتوزاى كه از خود انزايمى ترشح مينمايند كه باعث حل دل
 رودهٔ كوپه قطعاً زندگى كرده نمتيواند . پس گفته ميتوانيهم كه سمبوزيكى حالت همزيستى مشتر ك بوده كه در عين
 حيات خود استفاده نمايند .

اهميت اقتصادى پپروتوزوا ها :

از لحاظ اينكه تعادل طبيعى را برقرار ميسازند و از باكتريا به حيث مواد غذائى استفاده مينمايند خيلى مطمه

مرگَ آنها ميگَردند . (|r-V / M|)

مثلاً ملاريا كه از زمان هاى قديم تلفات سنگ̌ين بر جامعه بشرى وارد نموده و باعث تلف شدن بسيارى

$$
\text { انسانمها گر ديده جهت امحاى اين مرض }{ }^{〔} \text {.W.H.O مجادله داشته و دارد . }
$$

فايلم پروتوزوا قراريكه در ابتدا مبحث ذكر نموديه كه به توضيح مختصر كلاس هاى پي هروتوزوا ها مييردازيهم :

: Class Mastigophora (Flagellata)

موجوديت يك قمچچين باريى Flagellum و يا اضافه تر از يك دريكى از مراحل دوره حيات و تمام
دوره حيات از مشخصات حيوانات اين كاس بشمار ميورد ـ در لاتين Mastix بینى قمحچين Phoraos به معنى داشتن است . قمچֶين ها بحيث عضو حركى انجام وظيفه نموده كه جهت بدست آوردن غذا نيز از آن ها استفاده به عمل آمده و ممكن بحيث عضو خنثى نيز استعمال شوند جسم اين حيوانات عموماً شكل بيضوى ، طولانى و يا كروى را داشته كه توسط يك قشر محكمم كه بنام Pellicle ياد ميگردد بسيارى انواع اين كلاس دارای پالاستيد ملونه ميباشند آن هاى كه داراى كلوروفيل اند قادر به ساختن مواد غذائى بوده و از مواد ساخته شده
 شور و شيرين همراه با دياتوم ها كه بحيث منبع بزرگى غذائى حيوانات بحرى را تشكيل ميدهل زندگى ميكنتند . عدةً ديگُى آن ها در جسم انسان ها و يا حيوانات مختلف بشكل طفيلى زندگى مينمايند كه بعضى شان امراض خطرناك را توليد مينمايند .

[^21]تكثر در اين حيوانات توسط عمليه انشقاق يا Fission صورت گرفته طوريكه جسم حيوان طولا شق شده و بدوحصه مساوى تقسيم ميشود بغضى انواع اين حيوانات توسط Multiple fission نيز تكثير مينمايند . بعضى Mastigophora ماستيگوفورا در بعضى مراحل زندگى به شكل كالونى در آملهه و بعضى سار كودينا در بعضى مراحل زندگى داراى فلاجيل بوده كه اين چنين حالات اين دو كلاس را به هم ديگَر متشابه ميسازد . مرمترين نماينده شان Eaglena و Vovox بوده در آب هاى ايستادء خندق ها ، حوض ها و غيره جا ها يافت ميشوند و بعضى انواع به شكل طفيلى بوده مانند جنس ، الف : Tyyponsomiasis كه در اين جمله شامل بوده كه باعث خواب افريقايى ميگردند اين مرض T. Rhatesiense و Tryponsoma gobiense از يی شخص به شخص ديگَر توسط گزيدن مگس تسى تسى انتقال مينمايد . ب : Leishmaniasis يا جنس لشمانيا باعث انتقال مرض Kala-azar ميگردد و اين مريض توسط Sandfly از يك شخص به

شخص ديگَر انتقال مينمايد .
ساختمان ماستيخَوفورا :
يوگلينا نمايندهُ مرم اين كلاس بوده كه بحالت آزاد زندگى ميكند بر عالاوه فلاجيل داراى كلروفيل نيز ميباشند . طول جسم اين حيوان به 0,1mm ميرسد قسمت قدامى عموماً يهن بوده اما قسمت خلفى آن تيز و نوكدار ميباشد سرتاسر حجره كه عبارت از جسم حيوان ميباشد و توسط يك غشا نازك و ارتجاعى پوشانيده شده كه بنام پليكل Pellicle ياد ميگردد. . در داخل اين قشر يک طبقه ناز ك و شفاف كه Ectoplasm نام دارد موجود است و بعد تر يك طبقه ديگَر بنام Endoplasm ياد ميشود موقعيت دارد ـ در انجام قدامى جسم يك ساختمان قيف مانند وجود دارد كه بنام Cytostome يا دهن حجروى ياد ميگردد واقع گرديده و در جوار ذخير گاه واكيول هاى موجود است كه به نام Cotracti Levocaule مسمى است .

در جوار ذخير كاه يك نقطه سرخ به نظر مى خورد كه بنام Stigma ياد ميشود و اين نقطه سرخ در مقابل نور حساسيت دارد . اين حيوانات داراى هسته مدور بوده و در نزديكى مركز حجره واقع ميباشد يوگلينا بر علاوه كلروفيل Paramylaum Bodies نيز داشته كه اين اجسام داراى كاربوهايدريت ميباشد . (عMr / هو)

شكل I-5 III $\}$: يوكلينا
حر كت :
يوكلينا توسط حر كات فنرى فلاجيل حركت ميكند و يا اينكه توسط انقباض و انبساط جسم خويش حركت مينمايند چون يوكَلينا داراى كلروفيل ميباشد بدين الحاظ معمولاً جانب نور مناسب حركت نموده اما در مقابل نور مستقيه از خود عكس العمل منفى نشان ميدهد . تغذيه Nutntion:

يوكلينا غذاى خود را توسط عمليه فتوسنتز بدست ميآورد با آن هم تا حال به اثبات نرسيده كه چه نوع يوگلينا توسط نور بدون موجوديت مواد عضوى Peptone نشو و نما كرده باشد يعنى بر علاوه موجوديت نور مواد غذائى نيز جهت نشو و نماى يوگلينا لازمى است در عدم موجوديت نور يوگكلينا از مواد عضوى منحل در آب

استفاده ميكند

تكثر Resprodaction :

تكثر در اين گروپ توسط Binary Fission صورت گرفته طوريكه در حيوان طولاً يك درز پيدا شده و در نيتجه انقسام حجروى يك حجره بدو حجره مبدل ميگَردد ـ طرز تكثر در يوكلينا را نشان ميدهد . نماينده ديگر كلاس ماستگوفورا عبارت اند از Tvypanosomea ، Volovx برخى فلاجيلاتا پر ازيت هاى داخلى بوده كه در جهاز هاضمه و خون حيوانات زندگى ميكنند و از آن جمله Trypanosoma تراى یانزوما در افريقا بكثريت يافت ميشود باعث خواب افريقائى گرديده كه توسط يك مگس بنام Testse از يكى
شخص به شخص ديگر انتقال مينمايد .
 ميحَردد ناقل اين يرازيت هم يكى نوع مگَس بنام Phlebotomus بوده كه توسط مكيدن خون يرازيت را از يك شخص به شخص ديكر انتقال ميدهد .

: Class sarcodina (Amaba)

نماينده مشهور اين كالس Ameba ميباشد در لاتين Sarcede به معنى كوشتى ميباشد جسم آميب عبارت از حجره واحد بوده كه داراى يك هسته و سايتويلازم كه تمام فعاليت هاى حياتى توسط همين حجره واحد انجام ميئيرد . ساختمان آميب Structure:

جسم آميب از يك كتله شفاف بيرنگً و جلاتين ساخته شده در حدود . •9 ميكرون بوده و داراى شكل غير
معين ميباشد اجزاى كه جسه آميب را تشكيل داده قرار ذيل اند :
ا- يكى جدار خارجى بسيار نازك كه بنام Plasmalema ياد ميشود .
r- اكتويلازم كه عبارت از يكى طبقه بسيار شفاف ميباشد .
 بكه كروى شكل بوده و از مايعات مملو ميباشد و به وقفه ها حركت نموده تا به سطح جسم حيوان ميرسد .
₹- تعداد واكيول هاى غذايى يى يا اضافه از آن بوده كه از لحاظ جسامت با هم فرق دارند درين واكيول ها مواد غذائى داخل گرديده كه توسط حيوان به هضم ميرسد به علاوه واكيول هاى ديگَر كرستل هاى ، ذرات شحم و ديگَ اجزا حجروى نيز موجود ميباشد طور خلاصه وظيفه هر عضو را قرار ذيل شرح
ميدهيم :

غشاى حجروى آن باعث نگَهداشتن محتويات حجروى گرديده و همچچنان عبور اكسيجن آب كاربن داى (a
اكسايد نيز توسط آن صورت ميگيرد .
(b اكتوپلازم باعث نگَمداشتن حجره ميگَردد .
. اندویلازم دارای اعضاى حركى و ديگر ساختمان ها ميباشد (c
(d هسته كليه تعاملات حياتى را كنترول مينمايد .

باعث منظهم نمودن آب در حجره ميگردد . Contractile vacoule (e
. (f
g(I) ديگُر اعضاى حجره باعث محافظه نمودن غذا و ديگُر مواد اساسى كه براى عمليه ميتابوليزم ضرورى اند . ميگردد
اگر يک آميب بدو حصه قطح گردد هر حصه قطع شده فوراً توسط غشاى حجروى محاط گرديده كه درين صورت از ضياع پروتوپلازم جلوگيرى به عمل ميآيد حصأ كه بدون هسته ميباشد به گرفتن غذا قادر بوده اما غذا
را هضم نموده نتوانسته و بالاخره به مرگ مواجه ميگردد .

شــكل

: Locomotion حركت

آميب توسط پاه هاى كاذب بنام Pseudo podia ياد ميحردد حركت نموده كه در اين پإى هاى كاذب وقتاً فوقتاً در هر جاى كه لازم باشد بر آمده و حيوان توسط آن به حركت در ميآيد حركت آميب نامنظم بوده كه اين حركت نامنظم بنام Amoeboid movement ياد ميگكردد اين نوع حركت نامنظم در حجرات سفيد

خون فقاريه ها ، اسنفج ها و غيره نيز ديده هيشود عوامل ذيل باعث حر كت آميب ميگرَدد : ا. ترشح مواد لزجى
r. تبديل نمودن پیاسموجيل به پالاسموسول و عكس آن「. تزايد قدرت و نيروى پیاسموجيل هنگامى كه بطرف عقب حركت ميكند . تغذيه و طرز گَرفتن غذا :
آميب از باكتريا ها ، يروتوزواى ديگر ، الجى ها ها ، روتفيرا و پروتويالازم مرده تغذيه مينمايد ـ ممكن بعضى
 حيوان ميگردد طوريكه اولاً غذا توسط پاه هاى كاذب احاطه گرديده و همراى يى مقدار آب داخل اندويلازم حيوان ميگردد كه بحيث واكيول غذائى ايفاى وظيفه مينمايد واكيول توسط سيلان اندويالزم حركت نموده براى
 معامله شوند يك محيط تيزابى را نشان ميدهند كه اين عمليه ممكن در اثر ترشح تيزابى شود كه باعث هضم قسمى غذا ميخردد . پس از مدتى واكيول شروع به افراز القلى ها مينمايند كه در نتيجه ذرات غذائى تجزيه كَرديده و توسط يروتويالازم جذب ميشوند و مواد فاضله از حجره خارج ميكرددد .

تنفس و اطراح:
آبى كه آميب در آن زيست ميكند داراى اكسيجن منحل بوده كه توسط غشاى حجروى حيوان داخل جسم آن ميگردد و مواد فاضله مانند كاز كاربن داى اكسايد و غيره توسط عمليه Diffusion از جسم حيوان دفع ميشود واكيول اطراحيه نيز جهت دفع نمودن مواد فاضله بها حيوان كمك ميكند اما وظيفه اساسى آن منظم ساختن مقدار آب جسم حيوان ميباشد.

مقدار آبى كه داخل واكيول اطراحيه ميكَردد حاصل عمليه ميتابوليزم و حاصل آنست كه توسط عمليه اسموس داخل جسم آميب ميكردد ـ زيرا محتويات داخل جسم آميب داراى غلظت بيشتر نسبت اينكه داخل جسم

آن ميكردد ميباشد اكر يى آميب در آبى كه غلظت نمك آن نسبت به غلظت آب داخل آميب بيشتر باشد كذشته

تكثر (Reprodiection)
هنگًاميكه آب به جسامت نهائى خود ميرسد توسط عمليه انشقاق دو كانه Binary fission تكثر ميكند ابتدا جسم آميب به شكل دايروى يا كروى در آمهه و توسط پاى هاى كاذب كوتاه احاطه ميگَردد و هسته توسط Mitosis انقسام مينمايد . هركاه شرايط محيطى مساعد باشد درين صورت مرحله بروفيس ، ده دقيقه
 هستوى هنگام متيافيس نا پديد گرديده و تابع درجه حرارت بوده طور يكه تجارب نشان داده در 24 درجه سانتى كريد يك أميب در مدت זケ دقيقه به دو حجره اميبيائى تقسيهم ميكَردد . كه مراحل فوق تور توسط سيكل تكثير آميب نشان داده ميشود .

شكل ه-

: Class Ciliata

اعضاى اين كلاس نيز وحيدالحجروى بوده و داراى مويى هاى بسيار باريك در سرتاسر خود ميباشند اين
مويى ها باعث حركت و بدست آوردن غذا ميگَردد . سيلياتا يك كلاس انكشاف يافته يروتوزوا را تشكيل و داراى الى

وظيفه هسته بزرى كنترول فعاليت ميتابوليكى در داخل حجره ميباشد تكثر درين كلاس يا زوجى و يا غير زوجى صورت ميگيرد. در صورتيكه تكثر زوجى باشد عمليه مزدوج شدن Conjagation رخ داده كه دو حجره در تماس همديگَر آمده و مواد بين الحجروى خود را تبادله مينمايند . اما تكثر غير زوجى توسط حجره واحد اجرا
 بوده كه داراى خاليگاه دهن مانند Oral groove يا مجراى Gullet مخراج Anal pore و دو عدد واكيول اطراحيه ميباشد . پارامشيهم كاداتمم بصورت آزاد زندگى مينمايند يعنى طفيلى نميباشند . يكى نوع ديگر آن كه بصورت طفيلى در امعا انسان زندگى ميكند و باعث مرض ييجّ ميگردد بنام Balontidium coli ياد

: Class Sporozoa
اعضاى اين كلاس كدام عضو حر كى نداشته و بطور آزادانه در خون زندگى مينمايند در اثر تشكيل سيور
عمليه تكثر آن ها صورت ترفته و داراى دوره حيات مغلق ميباشد و بعضى حيات آزاد و بعضى حيات طفيلى از جمله مضر ترين سيوروزوا نوع Plasmodium كه بسيار مشهور بوده كه در انسان ها ، شادى ها و پرندگان باعث تب ملاريا ميگردد . پرازيت هاى اين مرض توسط جنس مونث پشه انافيل انتقال مينمايد . پشه موصوف
 بوده كه توسط يک خون انسان را چوش نموده و توسط ديگر آن پرازيت هاى مرض ملاريا را داخل بدن انسان مينمايد . سه نوع ملاريا توسط سه جنس مختلف پشه توليد ميگَردد :

Benigntetro malaria مرضيكه توسط اين جنس توليدميگردد بنام Plasmodium Vivax - ا
ياد شده و بعد از هر ^^ ساعت تب توليد ميشود .

Quartan malaria مرضى كه توسط اين جنس توليد ميگردد بنام Plasmodium malaria - r ياد شده و عموماً Vr ساعت تب توليد ميگردد .
Penicious مرضيكه توسط اين جنس توليد ميگردد بنام Plasmodium Faciparum . ياد ميشود و در اوقات نامعين تب توليد ميشود malaria

دوران حيات پلازموديه, :
ملاريا در اثر گزيدن جنس مونث پشه انتقال مينمايند (جنس مذكر به نسبتى ملاريا را انتقال داده نميتواند كه دهن يا نيش وى داراى دو مجراى جداكانه ميباشد) • تنها نوع انافيل ميتواند كه پرازيت هاى ملاريا را در بدن انسان داخل نمايد زمانى كه پرازيت هاى ملاريا در غدوات لعابيه پشه موجود باشد هنگام گَزيدن آن ها را در داخل خون انسان مينمايد درين مرحله پرازيت بنام Sporzoite ياد ميگردد . سپوروزايت ها حجرات خون را مستقيماً مورد حمله قرار نداده بلكه بالاى انساج حجرات كه محل نمو و انكشاف آن ها ميباشد حمله نموده و بدوران حيات خود آغاز مينمايند . بعد از سپرى شدن وقت كم يا زياد شدن بعضى پرازيت ها داخل جريان خون گرديده و از آن جا رساً داخل حجرات سرخ خون ميشوند كه هر حجره ايكه مورد حمله طفيلى قرار گرفته داراى يك عدد پالازموديم بوده و داراى شكل انگشتر مانند ميباشد بعد تغيير شكل نموده و يك شكل نامنظهم را بخود اختيار مينمايد . اين شكل انگشتر مانند را كه سپس به شكل نا منظم (اميبائى) در ميآيد بنام Trophozoite ياد مينمايند . تروفوزوئيت بالغ و رسيده به يك تعداد زياد حجرات دخترى كه بنام Merozoites ياد ميگردد منقسيهم گرديده و بعداً داخل جريان خون ميگردد . هر زمانى كه اين دوره تكرار ميگردد تعداد زياد حجرات سرخ خون مورد حمله ميرزوايت ها قرار گرفته كه در نتيجه تب گرم و يا سرد توليد ميشود . يك تعداد ميزوزوايت ها عوض اينكه به شكل تروفوزوايت در آيند گميت هاى مذكر و مونث را تشكيل ميدهد كه اين مرحله بنام . ياد ميگردد Gameto cyte

گميت ها تا زمانيكه در بدن انسان باشد تكثر نكرده و بحال خويش باقى ميماند و هم باعث توليد كدام
مرض يا رسانيدن صدمه نميگردد . اما زمانيكه داخل بدن پشه گرديد در آنجا به تكثر آغاز مينمايد . دو قسم گّميتوسايت مونث كه به تخمم كروى واحد مبدل ميگردد و بنام Female gamets ياد ميگردد گميتوسايت

مذكر كه داراى قمچچين هاى متعدد بوده و هر قمچیين گّميت مذكر (سیرم) را تشكيل و آزادانه حركت مينمايد(هر گَميت را بنام Schizent و مرحله كه در آن تكثر غير زوجى صورت ميگيرد بنام Schizogony ياد
مينمايند) .

زمانيكه تخم اتحاد نمود Zygote , تشكيل داده چون زايگوت قابليت حركت را دارا ميباشد بنام (تخمه القاح شده) در معده پشه اخذ موقعيت نموده و در آنجا هسته Ookinete . ياد ميگردد Ookinete آن چندين بار انقسام نموده و در نتيجه بالغ به توليد نمودن تعداد زياد سيورزوايت ها گرديده و اين سيورزوايت ها Oocyst ياد ميگردد ملفوف ميگردند . تعداد اين Oocyst برای يك وقت كم در داخل يك خريطه كه بنام در سيستم هاضمه پشه داخل ميگردد . سپورزوايت ها محر ك بوده و داخل غدوات لعابيه پشه گرديده و هنگگام مكيدن خون سپورزوايت ها توسط پشه داخل جريان خون انسان گرديده و مانند سابق بدوره حيات خود آغاز مينمايد . دوران حيات یلازموديهر را توسط شمياى زير نشان ميدهيه. . براى اينكه ار مرض ملاريا نجات يابيه بايد كلكين ها ، دروازه ها هم جالى داشته باشد و هم وقتاً فوقتاً ادويه ضد حشرات در اطاق استعمال گردد .

\qquad

فصل ششم

ميكروب شناسى خاى:

خاك مخلوط نسبتاً ييحيده ای از مواد معدنى جامد ، آب ، هوا و جانداران و محصولات آنها ميباشد. در تركيب مواد خاك تغييرات كيمياوى و فزيكى متعددى رخ ميدهل . فوقانى ترين لايه خاك از لحاظ حضور جانداران حايز اهميت ميباشد . ساختمان فزيكى ، تركيب كيمياوى ، منشأ ، عمق و حاصلخيزى اين لايه فوق اللاده متفاوت است .

خاكى حاصلخيز داراى تعداد بيشمارى جانداران ميكروسكوپى است ، مانند نماتودا ها ، حشرات ، هزار پايان ، عنكبوت ، حلزون ها ، كرم هاى زمينى ، موش ها ، خزندكان و غيره . اكثر اين جانداران از لحاظ جابجائى ميكانيكى كه در خاكى ايجاد ميكنند و ساختمان خاك را نرم ميسازند حايز اهميت ميباشند . بعاووه ، همه جانداران

خود به تشكيل مواد عضوى خاكى كمك ميكنند و مواد زايد و اجساد آنها در خاكى دفن ميگَردد . خاك همحֶنين داراى سيستهم ريشه هاى گياهان عالى و تعداد زيادى ميكروب ها ميباشد . بدون وجود ميكروبها بخصوص باكترياى خاك بزودى غير قابل زندگى ميگردد . باكتريا ها بطرق مختلف در خاكى تاثير ميگذارند . عده زيادى مواد عضوى را به مواد ساده تبديل ميكنند و در اين واكنش ها مواد غذائى در دسترس جانداران ديگر قرار ميگيرد . برخى از آنها در تغيير و تبديل تر كيبات مواد نايتروجن دار و سلفر دار شركت كرده و مواد قابل مصرف اين عناصر را بطور دايهم فراهم ميسازند .

ميكروب شناسى خاى ، آب ، هوا و غذا

ميكروب هاى خاكى :

خاك يكى از مخازن عمده ميكروبها محسوب ميشود ـ خاك زراعتى مرغوب به وسعت ميدان فوتبال حاوى كتله ميكروبى است بوزن يی كاو كه در آن زمين ميحرد . ولى ظرفيت ميتابوليكى اين تعداد انبوه ميكروبها احتمالاً صد هزار برابر كاو ميباشد . فلمها ، اندازه كيرى كاربن داى اكسايد كاربن آزاد شده از خاك و شواهد ديگَر نشان ميدهد كه اين ميكروبها در شرايط كمبود مواد غذائى بسر برده و با سرعت كمى توليد مثل ميكنند . هنگاميكه مواد غذائى به خاك افزوده ميشود ، توده هاى ميكروبى و فعاليت آنها بسرعت افزايش مى يابد و در نتيجه مواد غذائى خاى مجدداً كم ميشود و در انيحال در سرعت پائين به توليد مثل خود ادامه ميدهند . (غץ /

فراوان ترين ميكروبها در خاكى باكتريا ها هستند . خاك باغچهه در هر گرام محتوى ميليونما باكتريا است . در چند سانتى متر از بخش فوقانى خاك تعداد ميكروببا حد اكثر بوده به تدريج هر چه عمق بيشتر ميشود تعداد آنها رو به كاهش ميگذراد . تعداد باكتريا ها را با روش كشت شان تعيين ميكنند و احتمالاً تعداد واقعى آنها دقيقاً تخمين زده نميشود زيرا ، يى نوع محيط كشت يا شرايط رشد نميتواند امكانات لازم را براى رشد فراوان انواع ميكروبها در خاك فراهم سازد كه توسط جدول زير تعداد انواع مختلف ميكروب هاى خاكى واضح ميگَردد :

جلبكها	قارجهبا	اكتينوهايست ها	باكتريا ها	عمق ()
ra...	$119 .$.	$r \cdot \wedge \cdot \cdots$	१Vด....	r-^
D...	Q....	rea...	riva...	r.-ra
a..	$14 .$.	+q...	$\Delta V \cdot \cdots$	ra-r.
1..	4...	Q...	11...	9 0 -Va
-	$r \ldots$	-	1F..	1ra-1\%a

اكتينوميست ها گرچֶه جز باكتريا ها طبقه ميشوند ولى بطور جداگانه در خاك مورد مطالهه قرار ميگیرند . اين دسته از ميكروبها ماده ای بنام زئوزمين ('Geosmin) در خاى توليد ميكنند كه بوى كیى زده بخاى ميدهد . در اين دسته از ميكروبها توليد مثل بوسيله اسيور هاى غير جنسى و قطعه قطعه شدن ميسليوم انجام

ميكروب شناسى خاى ، آب ، هوا و غذا

ميگيرد . توده واقعى زياگان (مقدار مجموعى جانداران در حجم معين) در مورد اكتنيوميست ها احتملاً در حد باكتريا ها است . اين دسته از ميكروبها بخصوص انواعى استرپتوميسس از لحاظ توليد انتى بيوتيک اهميت دارند . جلبى ها و سيانوباكتريا ها توده هاى انبوهاى بر روى خاكماى مرطوب تشكيل ميدهند و همچنْين در خاى هاى خشک بيابانى نيز ديله ميشوند . اين دسته از ميكروبها غالباً در لايه سطحى خاكى جائيكه تابش نور خورشيد ، آب و كاربن داى اكسايد فراوان است رشد ميكنند . معهذا ، تعداد زيادى از جلبكما و سيانووباكتريا ها تا عمق • ف سانتى مترى خاك نيز ديده ميشوند . اهميت اين دسته از ميكروبها و تغييراتى كه در محيط ايجاد ميكنند در موارد خاصى جالب توجه است . بعنوان مثال تثبيت نايتروجن جوى در چراگاه ، نواحى توندرا توسط برخى از انواعى سيانوباكتريا ها انجام ميگيرد و در نواحى بيابانى بعد از بارندگى اين عمل سيانوباكتريا ها در حاصلخيزى خاك اهميت دارد.

ميكروب هاى مولد مرض در خاك :

براى ميكروبهاى بيماريزاى انسانى كه به زندگى پرازيتى عادت كرده اند ، خاك نا مساعد است . حتى برخى انواع مريضى هاى نسبتاً مقاوم مانند انواعى سالمونلا هنگاميكه وارد خاى ميشوند فقط مدت چند هفته يا چند ماه ميتوانند زنده بمانند اغلب ميكروب ها مرض زا انسان كه قدرت زندگى در خاى را دارند انواع سپور دار ميباشند . اسپور باسيلوس انتراسيس (عامل سياه زخم در حيوانات) در برخى از خاك ها ده ها سال بحالت زنده بسر برده و سرانجام هنگامى كه بوسيله حيوانات چرا خورده گر ميشود تندش حاصل مينمايد . در مدفون كردن اجساد حيوان آلوده به سياه زخم احتياط لازم را بايد بكار گرفت تا از آلوده شدن خاك بوسيله سپور هاى اين باكتريا ها جلوگيرى شود . كلاستريديوم تتانى (عامل كراز) ، كلاستريديوم بوتولينه (عامل توليسم) و كالاستريديوم پر فرنجنس (عامل كانگرين گازى) نيز مثالماى ديگرى از ميكروبهاى بيماريزائى اسيوردار ساكن خاى ميباشند . از محيط اين ميكروبها در مواد غذائى يا نواحى زخمى بلن وارد شله و پس از رشد تو كسين ايجاد ميكنند
ميكروبهاى بيماريزائى در گیاهان غالباً ساكن خاك ميباشند . اكثر ميكروبها بيماريزائى خاك را قارچها تشكيل ميدهند زيرا ، اين دسته قادر اند در رطوبت كم به سطح گياهان رشد نمايند . بسيارى از رنگمها ، سياهك ها ، سوختگيها و پثرمرده گی ها در گياهان بوسيله فنجى هاى كه قادر اند بخشى از سيكل زندگى خود را در خاك طى كنند ايجاد ميگردد . برخى از ميكروبها خاكزى در حشرات بيماريز| هستند و از اينرو ميتوان براى مبارزه با آفات از آنها استفاده كرد . بعنوان مثال ، باسيلوس ترانجينسيس (B. Thringiensis)

ميكروب شناسى خاك ، آب ، هوا و غذا
فصل ششم
لارواى بسيارى از حشرات مولد مرض است و امروزه از آن براى كنترول حشرات استفاده ميشود ـ اسيور بلعيده شده بوسيله حشره تندش يافته و باسيل حاصل كريستال پروتينى توكسين توليد ميكنند كه سرانجام حشره را ميكشد . در خاك انواع ديحر از ميكروبهاى بيماريزا در حشرات يافت ميشود مانند واييرس ها وا و قارجها و تحقيقات در مورد آنها براى استفاده جهت مبارزه با آفات در حال ييشرفت است .

ميكروب ها و سايكل بيو -زئو كيميائى :

شايد مهمترين نقش ميكروب هاى خاك شركت آنها در دوران بيو- رئوكيميائى باشد كه به دوران برخى
 صورتيكه اين فعاليت ميكروبى در جهت گَردش عناصر در طبيعت انجام نميگَرفت سرانجام عناصر ضرورى بها مصرف رسيده و حيات متوقف ميشد .

دوران كاربن در طبيعت :
همه تركيبات عضوى داراى كاربن است • بخش عمده كاربن معدنى كه براى سنتز تر كيبات عضوى به
مصرف ميرسد از كاربن داى اكسايد جو تامين ميگردد ـ مقدارى كاربن نيز در آب حل ميشود .

اولين مرحله در سيكل كاربن مصرف كاربن داى اكسايد در فتوستنز بوسيله فتواتوتروفعاى ماكيانداند
سيانوباكتريا ها ، گياهان سبز ، جلبكها ، و باكتريا هاى سلفرى سبز ارغوانى ميباشد . كاربن داى اكسايد توسط فتواتووتروفها بصورت تركيبات عضوى در ميآيد . در مرحله بعدى كيمو اتوتروفما تركيبات عيات عضوى را با به مصرف
 طريق تر كيبات عضوى هضم شده و بار ديگر ساخته ميشود ـ در اين راه اتم هاى كاربن اوليه كاربن داى اكسايد از جاندارى به جاندار ديعر انتقال مى يابد .

 داى اكسايد به جو باز ميكردد . كرحه كاربن داى اكسايد جو فقط 0,03 فيصد كاز هاى جو را تشكيل ميدهد ولى

ميكروب شناسى خاى ، آب ، هوا و غذا
فصل ششم

كاربن در صخره هاى مانند سنگ آهك ذخيره ميشود و در آب اقيانوس هاى بصورت آيون كربنات حل ميشود و همچچنين بصورت مواد عضوى در ذغال سنگ و پطرول انباشته ميشود . سوزاندن اين قبيل مواد سنگَواره

سوختنى موجب آزاد شدن كاربن داى اكسايد در اتموسفير ميگردد . دوران كاربن را توسط شيماى ذيل نشان ميدهيهم:

سيكل 1-9 \} צץ \{: كاربن داى اكسايد در طبيعت

دوران نايتروجن در طبيعت :

همه جانداران برای سنتز پروتين ها ، نو كلئيك اسيد ها و ساير تر كيبات نايتروجن دار به نايتروجن احتياج
دارند . نايتروجن ماليكول •^ فيصد گاز هاى اتموسفير را شامل ميگردد و اتموسفير بالاى هر جريب خاى حاصلخيز داراى بيش از • ها هزار تن نايتروجن است . لهذا با وجود فراوانى اين گاز هيحيك از جانداران يوكاريوت نميتوانند از آن استفاده كنند . اين نايتروجن بايد با ساير عناصر مانند هايدروجن و اكسيجن تثبيت گردد ، تر كيبات حاصله كه شامل آيون نيترات و امونيم است توسط جانداران مورد استفاده قرار ميگيرد . نيرو هاى فيزيكى و كيمياوى كه در خاى ، آب و هوا عمل ميكنند همراه با فعاليت ميكروبراى خاص عوامل مهمى در تبديل نايتروجن
به اشكال قابل مصرف محسوب ميشوند .

نايتروجن موجود در خاى بصورت ماليكلول عضوى بخصوص پروتين ها ميباشد . هنگاميكه جانداران مى
ميرند تجزيه اجساد آنما موجب هايدروليز پروتين ها بصورت امينواسيد ها ميشود و گَروه هاى امين اين اسيد ها در عمل امونياک سازى آزاد ميگردد .

$$
\begin{aligned}
& \text { آمونياک سازی توسط باكتريا ها و قار چهاى هوازی غير هوازى انجام ميگيرد. } \\
& \text { آمونياى ، آمونياک سازى ، امينو اسيد ها ، تجربه ميكروبى ، پروتين سلول هاى مرده }
\end{aligned}
$$

ميكروب شناسى خاى ، آب ، هوا و غذا
فصل ششم
رشد ميكروبها انزايمهاى پروتئوليتيك خارج سلول آزاد ميسازد كه به ساده شدن مواد كيمياوى كمك ميكند . سرنوشت آمونياى حاصل به شرايط خاك بستگى دارد . چون آمونياک بصورت گاز است ممكن است بسرعت از خاكهاى خشكى خارج گردد ولى در خاكهاى مرطوب در آب حل شده و آيون آمونيم تشكيل ميدهد . $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{NH}^{+4}+\mathrm{OH}^{-}$

آيون آمونيم توسط باكتريا ها و گَياهان در سنتز اسيد هاى آمينه بكار گرفته ميشود .
يك تعداد واكنش هاى ديگُى كه در سيكل نايتروجن رخ ميدهد شامل اكسيده شدن آيون آمونيم به نيترات طى فرايند شوره گَارى (Netrification) ميباشد . دو نوع باكتريا در خاى بنام نيتروزوموناس (در دو مرحله متوالى آمونياك را به نتيرات اكسيده ميكنند.
$\mathrm{NH}_{4}^{+} \longrightarrow \mathrm{NO}_{2}^{-} \longrightarrow \mathrm{NO}_{3}$

نيترات ها شكل قابل استفاده نايتروجن براى گياهان است و گَياهان نايتروجن آنرا در سنتز يروتين بكار ميبرند . در نقاط مختلف سيكل نايتروجن جوى وارد يا از آن خارج ميشود ـ خارج شدن نايتروجن از سيكل طى

فرايند شوره بردارى (Deniritication) انجام ميگيرد كه طى آن نيترات به گازات تبديل ميگردد .
$\mathrm{NO}_{3}{ }^{-} \longrightarrow \mathrm{SO}_{2}^{-} \longrightarrow \underset{\text { كاز نايتروجن }}{ }$
انواعى سودوموناس مهمترين باكتريا هاى خاى در شوره بردارى محسوب ميگردند . تعدادى از انواع ديگر
از جمله ییاراكو كوس (Paracoccus) تيوباسيلوس نيز داراى انواعى هستند كه قادر اند شوره بردارى انجام دهند . باكتريا هاى شوره بردار هوازى هستند ولى تحت شرايط غير هوازى بجاى اكسيجن ميتوانند نيترات را به عنوان پذيرنده نهائى الكترون بكار گيرنده (تنفس غير هوازى).
از اينرو فرايند شوره بردارى غالباً در خاكهاى پر آب كه عارى از اكسيجن ميباشد فعال تر است . چچون باكتريا هاى شوره بردار نايتروجن را در اتموسفير آزاد ساخته و نيترات را از خاك ميگيرند لذا ، از نظر حاصلخيزى

مرحله آخرى دوران نايتروجن تبديل نايتروجن به آمونياك تحت فرايند تثبيت نايتروجن ميباشد . فقط
بعضى از باكتريا ها و سيانوباكتريا ها قادر بانجام اين عمل ميباشند . انزايهم نيتروثناز موثر در تثبيت نايتروجن احتمالاً در اوايل پيدايش زمين قبل از آنكه اتموسفير داراى اكسيجن گشته و تركيبات نايتروجندار از منابع عضوى

ميكروب شناسى خاك ، آب ، هوا و غذا

در دسترس قرار گيرد بوجود آمده است . تثبيت نايتروجن توسط دو نوع ميكروب هم زی و غير هم زى انجام ميگيرد .

باكتريا هاى غير همزی كه زندگى مستقل دارند بخصوص در ريزوسفر گیياهان در چراگاه يافت ميشوند
مانند ازتوباكتريا . اين باكتريا ها ظاهراً با مصرف سريع اكسيجن كه نفوذ آنرا در سلول به حد اقل ميرساند انزايهم نتروزناز را حفظ ميكند . باكتريا ديگر هوازى اجبارى غير هوازى كه نايتروجن اتموسفير را ثابت ميكند با يرنكيا (ا نام دارد . برخى از باكتريا هاى غيز هوازى مانند كادتريديوم ها نيز نايتروجن اتموسفير Bei jerinekia

ثابت ميكنند
در سيانوباكتريا ها معمولاً انزايهم نيتروزناز در داخل سلولهای اختصاصى بنام هتروسيست (Heterocyst) قرار دارد و اين سلولها شرايط كاملاً غير هوازى براى تثبيت نايتروجن دارا ميباشد . وجود اين ميكروبها بخصوص در خاكمای پر آب مانند شاليزار ها حايز اهميت ميباشد . يكى از ميكروبهاى غير هوازى اجبارى ثابت كننده نايتروجن كلاستريديوم پاستوريانوم است . ساير باكتر يا هاى غير هم زی تثبيت كننده نايتروجن انواعى غير هوازى اختيارى كلبسيلا ، انتروباكتر ، باسيلوس و فتواتوتروفקاى مانند رود واسپيريلوم (Rhodospirillum) و كلروبيوم (Chlorbium) ميباشند .

اغلب ميكروب ها غيز همم زى ثابت كننده نايتروجن قادر اند تحت شرايط لابراتوارى مقدار زيادى
نايتروجن تثبيت نمايند ولى در محيط خاى مقدار كاربوهايدريت كل براى تامين انرزى جهت احياى نايتروجن به آمونيای و وارد كردن آن در ساختمان پروتين ها لازم است كم ميباشد و از اين رو تثبيت نايرتوجن بكندى انجام ميگيرد . با وجود اين ، باكتريا ها در اقتصاد نايتروجن مناطقى مانند هراگاه ، جنگل ها و توندرا هاى قطبى نقش

مهمى بعملده دارند .
باكتريا هاى همى زى (هميار) ثابت كننده نايتروجن حتى نقش مهمترى در رشد گياهان و توليد محصول بازی ميكنند . در رابطه همزيستى دو وجود متعلق به دو نوع مختلف با يكديگر زندگى كرده و هر يکى از ديگرى بهره مند ميگردد . اين چنبن رابطه در انواعى ريزوبيوم با ريشه گياهان خانواده باقلا مانند لوبيا ، نخود ، بادام زمينى ، شبدر و رشقه شرح داده شده است . اين گیاهان ممهم از نظر كشاورزى فقط نمونه هاى از چند هزار نوع هستند كه بصورت بوته يا درختچه در خاكمهاى فقير بسيارى از نواحى دنيا رشد ميكنند . باكتريا هاى ريزوبيوم با انواعى خاصى از گیاهان خانواده باقلا زندگى همزيستى دارند . اين باكتريا ها به ريشه گياهان ميزبان معمولاً در ناحيه تار هاى كشنده متصل ميشوند . در تار كشنده ريشه در نتيجه آلودگى با

ميكروب شناسى خاك ، آب ، هوا و غذا فصل ششم

باكتريا تورم ايجاد ميشود كه منجر به پيدايش رشته آلودگى گشته واين رشته از تار كشنده گذشته و وارد ريشd ميگُردد ـ باكتريا ها اين رشته آلوده گى را دنبال كرده و وارد سلول هاى ريشه ميشوند ـ در داخل سلولها شكل آنها تغيير يافته بصورت اشكال بزرگتر بنام باكتروئيد در ميآيند كه سرانجام سلول گییاه را پر ميكند . سلولهاى ريشه در اثر آلودگى تحريک شده و گره هاى تومر مانند مركب از سلولها پر از باكتروئيد تشكيل ميدهل . آنگاه نايتروجن جوى با همزيستى بين گییاه و باكتريا تثبيت ميگردد . گَياهان شرايط غير هوازى فراهم ساخته و مواد غذائى لازم را در اختيار باكتراى ميگذارد و باكتريا نايتروجن اتموسفير را تثبيت ميكند كه بعداً اين نايتروجن در ساختمان پروتين
وارد ميخردد .

هر سال ميليونها تن نايتروجن جوى از اين راه در خاك وارد ميشود ـ مثالهاى ديگرى از تثبيت نايتروجن به طريقه همزيستى در گياهان ساير خانواده ها درخت غان 'است . اين درختان نخستين گياهانى هستند كه بعد از آتش سوزى يا يخ بندان در جنگًل ميرويند . درختان غان بوسيله اكتينوميست همزى بنام فرانكيا (Frannkia) آلوده شده و بر روى ريشه آن گره هاى ثابت كننده نايتروجن تشكيل ميگردد . با یرورش درخت غان ميتوان در سال حدود •ه كيلو نايتروجن در هر جريب تثبيت و به اين ترتيب به اقتصاد جنكًل كمك نمود .

گلسنگگ ها نيز به اقتصاد نايتروجن در جنگًل كمى ميكنند . همزيستى بين يک قارج و يک جلبک يا سيانوباكتر گلسنگ را بوجود ميآورد . هنگاميكه يک از ياران سيانوباكتريا باشد نايتروجن اتموسفير تثبيت شده و خاك جنگًل از نظر نايتروجن غنى ميگَردد . سيانوباكتريا ها ميتوانند مقدار زيادى نايتروجن را در خاكهاى نواحى
 سيانوباكتريا ها قادر اند با سرخسمای كوچک شنارو بنام آزولا (Azolla) كه بطور فراوان در شاليزار ها در سطح آب رشد ميكنند زندگى همزيستى برقرار سازند . اين دسته از ميكروبها بحدى نايتروجن اتموسفير را تثبيت ميكند كه نيازی به افزودن كود نايتروجن به شاليزار برنج نيست .

[^22]ميكروب شناسى خاك ، آب ، هوا و غذا
همچֶنان ميكروبها در گردش عناصر ديگُرى در دوران هاى طبيعى دخالت دارند (مانند سلفر) و به علاوه، ميكروبها تغيير و تبديلات زيادى در پتاسيهم ، آهن ، منكَنيز ، سيماب ، سلنيوم ، جست ، و ساير مواد معدنى ايجاد (ميكنند . انواع واكنش هاى كيمياوى در اين سيكل هاى غالباً براى مصرف كردن عناصر جهت تغذيه گياهان بصورت محلول) و در ميتابوليزم آنها لازم و ضرورى است .

تجزيه حشره كش ها و ساير مواد كيمياوى :

ميكروبما خاك نقش مهمى در تجزيه موادى كه در خاكى وارد ميشود بعهمده دارند . مواد عضوى طبيعى مانند برگهاى درختان ، بقاياى جانوران به راحتى تجزيه ميشوند . معهزا در عصر صنعتى كنونى بسيارى از مواد كيمياوى مانند آفت كش هاى زراعتى ، پلاستيك به مقدار زياد در خاكى وارد ميشود . بسيارى از اين مواد D.D.T. كيمياوى ساختگى در برابر عمل تجزيه كننده ميكروبها مقاوم هستند . معروفترين مثال حشره كشا است . هنگاميكه اين حشره كش اول بار بكار گَرفته شد نتيجه خوبى از خود نشان داد بطور يكه با يك بار مصرف اثر حشره كشى آن به مدت طولانى باقى ميماند ، ولى بزودى دريافتند كه اين قبيل مواد كيمياوى بعلت محلول بودن در شحم در نواحى خاصى از زنجير غذائى متراكم ميگردد . عقاب ها و ساير پرندكان طعمهخوار با تغذيه از مواد غذائى آلوده شده D.D.T. را در انساج خود متراكمم كرده و در نتيجه اختلالات توليد مثلى ييدا ميكنند (تخمه ها پوسته نرمى پيدا كرده و جوجه توليد نميگَردد) . هـ مواد كيمياوى ساختگى مانند (.D.D.T) پايانيستند .

ميكروب هاى آب و تصفيه فاضلاب :

در مايكروبيولوثى آب ميكروبها و فعاليت آنها در آبهاى طبيعى مانند درياهه ها ، حوض ها ، ، نهر ها ،
رودخانه ها ، آبروها و دريا ها مورد مطالهه قرار ميگيرد ـ در اين بحث ميكروبهاى آب شيرين و آب دريا مورد بحث
قرار ميكيرد .

بطور كلى وجود مواد غائى زياد را در آب ميتوان از روى تعداد زياد ميكروب ها حدس زد . آبى كه بوسيله
فاضلاب يا مواد زائد تجزيه شدنى كارخانجات صنعتى آلوده ميشود نيز داراى تعداد زيادى باكتريا است ـ همينطور آبرو هاى اوقيانوس ها كه داراى مواد غذائى زياد ميباشد بيش از آبهاى ساحلى ميكروب دارند ـ در آبهاى فقير از نظر تراكم مواد غذائى ميكروبها بر سطح مواد بيشتر رشد كرده و در آب بسر نميبرند . در اين حالت ميكروب بيشتر به حالت شناور با مواد غائى تماس ييدا ميكند . بسيارى از ميكروب ها كه محل اصلى زندگى شان آن آب است
 وزيكولماى گازى هستند كه حالت شناورى آنها را تنظيم ميكنند . ميكروب هاى آب شيرين :

براى بررسى انواع ميكروبها و نواحى زيست آنها در آبهاى شيرين ميتوان يكى درياهِه يا حوض را در نظر
كرفت . نواحى آب شيرين عبارتست از :
(Littoral zone () : داراى رويش هاى ريشه دار فراوانى بوده و نور خورشيد در اعماق
آب نفوذ ميكند .
r. Limnetic zone () : آبهاى باز كه دور تر از ساحل قرار كرفته است .

「.
غ. ناحيه كف آب (Benthic zone) : كه رسوبات زيادى در آن وجود دارد .
كتله هاى ميكروبى آبهاى شيرين بر حسب دو عامل اكسيجن و نور تغيير مى يابد و از اين دو عامل نور نقش مهمهترى را بازى ميكند زيرا ، جلبك هاى فتوستنزى منبع اصلى مواد عضوى و انرزى براى دريایه ميباشند. اين حيوانات اصولاً اولين توليد كندكان درياهي بوده و حيات باكتريا ها، يروتوزوا ها ، ماهيها و ساير آبزيان را تامين مينمايد . اين جانداران در ناحيه سطحى آب بسر ميبرند ، جائيكه اكسيجن كافى در دسترس بوده و انواعى
 (وجود دارد. اكسيجن براحتى در آب نفوذ نمى كند . ميكروبهاى كه بر روى مواد

ميكروب شناسى خاى ، آب ، هوا و غذا
فصل ششم
غذائى در آبهاى ايستاده بسر ميبرند بسرعت اكسيجن محلول در آب را به مصرف رسانده در نتيجه حيات ماهى را به خطر انداخته و با فعاليت انواع غير هوازى مواد بد بوى ايجاد ميشود (هايدروجن سلفايد و تيزاب عضوى) . عمل امواج در لايه هاى سطحى آب يا حركت آب در رود خانه ها ميزان آي اكسيجن آب را افزايش داي داده و رشد باكتريا هاى هوازى را امكان پذير ميسازد ـ در نتيجه بالا رفتن كيفيت آب تجزيه مواد غذائى آلوده كننده آب آسان

تر انجام ميگيرد .
باكتريا هاى توليد كنده ميتان نيز بخشى از ميكروبهاى غير هوازى كاز ميتان كف آب را تشكيل ميدهند . در باطلاق ها ا رسوبات كف آب اين باكتريا ها كاز ميتان توليد ميكند. انواعى كاستريديديوم در رسوبات كف آب فراوان است .

در آب هاى شيرين توليد كندكان اوليه ، جلبكها و سيانوباكتريا هاى فتوستنيك هستند و سرانجام اين ميكروبها بوسيله آبزيان مصرف شده آنتاه بوسيله باكتريا هاى ناحيه سطحى آب و كف دريایه به عناصر اوليه تجزيه ميگردد.

ميكروبهاى آب دريا :
در آب اوقيانوس ها فشار اسموس بالاى مواد غذائى كم است و همحنين PH بالاتر از حد اوسط لازم براى رشد اكثر ميكروبها ميباشد . از اين رو باكتريا ها در پا هنين آبهاى بسيار كمتر از آبرو ها و و اغلب آبهاى شيرينى

 با استفاده از كاربن داى اكسايد اتموسفير و انرثى فتوستنز ماده سازى ميكنند و روى همر رفته جامعd

ميكروب شناسى خاك ، آب ، هوا و غذا فصل ششم فيتوپانكتون’ د دريا ها را تشكيل ميدهند كه اساس زنجير غذائى در اقيانوس محسوب ميشوند . باكتريا هاى اقيانوسها با چسپيلن به فتوپlانكتون ها و باكتریا ها تغذيه ميكنند . سخت پوستان كوچک مانند كوپه چد ها و ميگومانند ها از پلاكنتون ها تغذيه نموده و به نوبه خود عامل مهمى در فراهمر ساختن غذا براى حيوانات آبى بزر گتر دريا محسوب ميشوند . بسيارى از ماهيان و نهنگ ها نيز قادر اند مستقيماً از فيتوپلانكتوها تغذيه نمايند . . ($|I r-\lambda| / 4 \mu$)
اثرات آلودگى (Pollution) : نفوذ آب در لايه هاى خاى كه به منزله صافى عمل ميكند ميكروبهاى
خود را از دست ميدهد و از اينرو آب چشمه ها ، چاه هاى عميق معمولاً از نظر حفظ الصحه كيفيت خوبى دارند . انتقال امراض عفونى : آلودگى منابع آب بوسيله ميكروبهاى بيماريزائى عامل مهمى در انتشار بسيارى از مريضى ها محسوب ميشود . بعضى اوقات با خوردن باكتريا ها مولد مرض مانند عامل تيفوئيد ، و باى آسيائى پییدار ميگردد . امراض پروتوزوائى مانند اسهال خونى آميبى يا اسهال زيارديائى از راه كيست هاى كه در آب واردميشود انتشار مى يابد . پرازيت هاى نسبتاً بزرگ مانند سر كارياهاى ترماتودا ها كه بحالت آزاد در آب شناور اند و همچچنين عامل شستوسومياز از طريق آب به بلن انسان راه مى يابند. در كشور هاى پيشرفته اين نوع آلودگى را با ريشه كن كردن ميكروبها از طريق سيستم تصفيه آب به حد اقل رسانده اند .

آلوده گی كيمياوى : آلودگى كيمياوى آبهاى مسئله دشوارى بوجود ميآورد . مقادير زياد مواد زائد صنعتى و كشاوزی بصورت مواد دومدار وارد آبها ميشود . بسيارى از اين مواد كيمياوى ميتواند از طريق بيولوزيكى در برخى از جانداران زنجيره غذائى متراكم شود .

يكى از بارز ترين نمونه هاى آلودگى اب با مواد زائد صنعتى ، آلودگى آن با جيوه است كه در كارخانه جات كاغذ سازى توليد ميشود . مواد زائد داراى جيوه را با اين تصور كه سيماب آن خنثى بوده و بصورت جداگانه در رسوب باقى مى مايد . در آب ها وارد ميسازند . فلمها ، باكتريا ها رسوب سيماب را بحالت محلول درميآورند و اين تر كيبات بوسيله ماهيرا و ساير جانداران ديگر جذب ميگردد ـ هنگاميكه اين قبيل مواد غذائى دريائى مورد استفاده

قرار گيرد ، سيماب در اعضاى بدن انسان متراكم و اثرات سوء خود را بر سيستم عصبى آشكار ميسازد . مواد زائد معادن ذغال سنگ در بعضى از نواحى داراى فاسفور زياد غالباً بصورت سولفيد آهن ميباشد . در جريان عمل اخذ انرزى از اكسيديشن آيون فروباكتريا ها مانند تيوباسيوليس فرواكسيدانس (Thiobacillus

ميكروب شناسى خاك ، آب ، هوا و غذا
فصل ششم (سولفيد ها را به سولفايد تبديل ميسازند ـ أنگاه سولفايت ها بصورت اسيد سولفوريك وارد نهر ها شده و با ايائين آرودن PH حيات حيوانات آبى را آسيب ميزند .

ميكروبهاى مولد مرض در هواى آزاد :

اسيور يوپنكها در هوا بوسيله باد مساحت زيادى بحر كت در ميآيند و سرانجام بر روى زمين رسوب ميكند .
 درمورد انتشار وسيع اسيور ها در هوا وجود دارد ـ ب بضىى از انواع تب رشقه بوسيله اسيور يرينك هاع اليجا ايجاد ميشود . ميكروبهاى بيماريزا در كياهان نيز از راه هوا انتشار ميكنند مثلاً اسيور آتشك گَندم .
 اثر تنفس وارد بدن ميشود ـ برخالاف انتقال غير مستقيم امراض مثلاً بوسيله آب وشير ، در اين نوع انتقال اتصال و ييوند بين منبع آلودگى و پذيرنده آن به آسانى قطع نميشود و معمولاً كنترول كامل امراض عفونتى از راه هوا منتقل ميشوند عملاً ميسر نميگَردد . تحت شرايط طبيعى مواد آلوده بصورت ذرات كوپّى پراكنده درميآيندو ممكن است در كردو خاكى دوباره معلق گثته و بوسيله تنفس وارد بدن شود . اههميت انتشار بيمارى بوسيله قطرات حاصل از سرفه ، عطسه و حرف زدن درهوا معلوم داشت كه در

انتشار ميكروب ها در فضا هاى بسته :
اكثر عوامل امراض انسانى در هواى اطاقها مدت زيادى زنده نمى مانند معَر آنكه با بزاق يا ترشحات
مخاطى همراه باشند . ميكروبى كه بوسيله بزاق يا ترشحات مخاطى محافظت شود ساعتعا زنده ميماند .

ميكروب هاى مواد غذائىي :

ميكروبها تنييرات مطلوب و نامطلوب در مواد غذائى يديد ميآورند و از طرف ديعر تهيه بسيارى از فرآورده هاى غذائى بدون كمك ميكروبها امكان پذير نيست مانند كلم شور ، زيتون رسيده ، كاكائو ، پينير و از اين قبيل اسيد هاى حاصل توسط ميكروب ها به حفظ برخى مواد غذائى مانند خيارشور و فرآورده هاى تاى تخميرى شير از كزند ميكروب هاى نامطلوب كمك مينمايد ، تغييرات مطلوب و نا مطلوب مواد غذائى را فاسد شدن مواد غذائى

ميكروب شناسى خاى ، آب ، هوا و غذا

فاسد شدن مواد غذائى توسط ميكروب ها :

فاسد شدن عبارتست از هر نوع تغيير در طعمم ، بو ، تر كيب يا شكل ظاهرى مواد غذائى كه آنرا نا مطبوع و بد مزه ميكند ميباشد . اصطلاح نا مطبوع و بد مزه را نميتوان دقيقاً توجيه كرد زيرا به سنت ، رسوم و تجربه افراد ارتباط پيدا ميكند . لهذا ، بطور عموم ، هر گروه و جمعيتى معيار هاى از نظر مطبوع بودن و خوش مزه بودن مواد غذائى برای خود دارند و هر نوع غذائى كه با اين معيار ها مطابقت نداشته باشد فاسد شده در نظر گرفته ميشود . فساد مواد غذائى مسئله اكولوزيی است . بسيارى از مواد غذائى تحت شرايطى كه آلودگى با انواع ميكروبها را فراهم ميسازد تهيه يا توليد ميشود و رشد نوع ميكروبها به آلودگى با انواع ميكروبها را فراهم ميسازد تهيه يا توليد ميشود و رشد نوع ميكروبها به تركيب مواد غذائى و شرايط انبار كردن بستگى دارد ـ ميكروب هاى كه قادر به رشد هستند ويزگى هاى ميتابوليكى غذا را تغيير داده و طعم ، بو ، تر كيب و ظاهرى محصول را
دگر گون ميسازند.

غذا هاى حيوانات و انسان را ميتوان بر حسب نوع آن تقسيه بندى كرد :

$$
\begin{aligned}
& \text { 1. محصولات گیاهى } \\
& \text { 「. . محصولات حيوانى } \\
& \text { r. محصولات ساختگى }
\end{aligned}
$$

آلودكى اوليه مواد غذائى :

محصولات گَياهى :
محصولات گیياهى از طريق خاكى كه در آن رشد مى يابند ، از هوا ، توسط حشرات و افراد انسانى كه با
آنمها سرو كار دارند آلوده ميشوند ـ ساختمان داخلى محصولات تازه معمولاً عارى از ميكروب ميباشند ـ سطح گياهان نسبتاً غير قابل نفوذ بوده و ميكروب ها به آسانى از آن نميتوانند عبور كنند چونكه سطح گیاه نسبتاً غير قابل نفوذ بوده و ميكروبما به آسانى از آن نميتوانند عبور كنند مگر آنكه سطح گیاهى زخمى شده باشد يا ميكروب ها بوسيله نيش حشرات در انساج داخلى آن ترزيق گردد.

گیاهان غده ای مانند كچالو ، پغندر و زردى بوسيله ميكروبهاى خاى پوشيده شده اند ولى اين نوع سبزيجات پوست غير قابل نفوذ دارند . سبزيجات مانند اسنفاج ، كاهو و كلم نيز فوق العاده آلوده به ميكروب هستند . اين محصولات داراى سطح نرم بوده و به سهولت مورد تماجهم ميكروبها قرار ميگيرند . سبز يجات يا ميوه هاى كه كمى بالاتر از سطح خاك رشد ميكنند بوسيله ميكروب هاى هوا يا نيش حشرات آلوده ميشوند .

ميكروب شناسى خاك ، آب ، هوا و غذا
فصل ششم
حشرات معمولاً از يك ميزبان اختصاصى تغذيه ميكنتد و به اين طريق ميكروبها را از يكى نبال به نمال ديحر همان نوع كياه انتقال ميدهند بطوريكه همه كياهان يك نوع ميكروبهاى مشابه ييدا ميكنند . مثالًا مخمر ها ها
 ميكروبهاى كه بر روى گياهان ديده ميشوند عبارتند از يوينك ها ، مخمر ها ، باكتريا ها ميله ای شكل اسيور دار و بدون اسيور و انواع كوكوسهـا . محصولات حيوانى :

محصولات حيوانى داراى ميكروبِاى داخلى بوده و همحنين توسط محيط و انسان آلودگى ييدا ميكند . هر كاه حيوان بطرز صحى ذبح كردد (بريدن وريد) بخش داخلى كوشت آن عارى از ميكروب است . سطج بدن حيوان كه در معرض هوا قرار ميگييد بوسيله ميكروبعاى يوست و روده ، وسايل كشتن و هواى كشتاركاه آلوده
 آلوده خورد ميكنند آلوده گى آن افزايش مى يابد.

ميكروب هاى روى گوشت عبارتند از : كوكوسهاى و باسيلهاى گرم منفى مانند آكروموباكتر (Achromobacter) ، ، آلكالى جنز (Alcalligenes) ، سودوموناس (Pseudomonas) ، تروتئوس (انواع كاليفرم باكترياى غير هوازى اسيوردار ، مخمر ها و ويونك ها ، ماهى داراى بسيارى از اين باكتريا بويرْه باسيل هاى بدون اسيور ييگّمان دار يا بدون ييگمان است تحْم مرغ پاكى ، تازه و سالم معمولاً بدون ميكروب است . قريب ^٪ تخمم مرغ هاى تازه داراى ميكروب است • زرده بيشتز از سفيده آلودگى ميكروبى ييدا ميكند . تخم مرغ كثيف يوشييده از ميكروبهاست و ميكروبها در شرايط انبارى نا مناسب به داخل آن نفوذ ييدا ميكند .

شير و انواع ميكروبهاى آن :

شيرى كه از پستان گاو سالم دوشيده ميشود پایى ميباشد ولى شير غالباً با انواع ميكروكوكها و استريتو كوكهايى كه معمولاً در مجارى ابتداى پستان بسر ميبرند آلوده ميشوند ـ تعداد اين ميكروب ها معمولاً بيش از هند ميكروب تا چچند صد ميكروب در هر ميلى ليتر شير بيشتر نيست .

باكتريا هاى كه معمولاً در شير و ساير محصولات شيرى يافت ميشوند در پهار كروپ زير قرار ميگيرند :

$$
\begin{aligned}
& \text { ا. كوكوسهايى معمولاً از نوع كرم مثبيت } \\
& \text { r. باكتريا هاى ميله اي شكل كرم مثبت بدون اسيور }
\end{aligned}
$$

ميكروب شناسى خاى ، آب ، هوا و غذا

$$
\begin{aligned}
& \text { r. باكتريا هاى ميله ای شكل گرم منفى اسپور دار } \\
& \text { 「× }
\end{aligned}
$$

كو كوسهاى شير طبيعى شامل انواع استريتو كو كوس لاكتيس است كه اغلباً در شير تازه وجود دارند ـ انواعى ميكروكوكوس نيز معمولاً ديده ميشوند . هر دو اين ميكروبها از پستان سالم وارد شير شده و برخى در حرارت

پاستوريزاسيون از بين نميروند و بر روى وسايل شير دوشى نيز مقاومت نشان داده و بسر ميبرند . لاكتوباسيلما غالباً در شير يافت ميشوند و در تهيه انواع شير هاى تخمرى يافته و ساختن انواع پنير ها حايز اهميت اند . رشد اين باكتريا ها در شرايط اسيدى بهتر انجام ميگيرد و از اين رو در شيرى كه معمولاً بوسيله استريتوكوكوس لاكتيس و ساير باكتريا هاى شير تازه ترش شده بهتر رشد و تكثر ميكنند .

محصو لات ساختكى :

ميكروفلور اغذيه ساختگى به ماهيت غذا و مراحل تهيه بستگى دارد ـ مثلاً شيرينى ها محتوى ميكروبهاى است كه از اقلام تهيه آن يعنى آرد ، شكر ، شير يا پودر شير ، تخمم مرغ يا پودر تخم مرغ و روغن يا مسكه و آب دارا است . وسايل و كاركنان نيز به ميكروفلور اين محصولات كمك ميكنند . در مراحل پختن پوپنک ها ، مخمرها و باكتريا هاى بدون اسيور كشته ميشوند ولى اسيور باكتريا ها زنده ميمانند ـ سطح هر نوع فرآورده الى در معرض آلودگى قرار دارد و پوپنى بشتر آنمها را آلوده هيسازند . تاثير خواص مواد كيمياوى در فاسد شدن مواد غذائى :
خواص كيمياوى محصولات غذائى نوع ميكروبهاى را كه قادر به رشد و در نتيجه فاسد كردن ماده غذائى . هستند تعمين مينمايد تر كيب ماده غذائى :

هروتين ها در معرض حمله ميكروبى قرار دارند و بسيارى از باكتريا ها قادر اند آنها را مورد تهاجه قرار دهند (باسيل هاى اسپور دار ، باسيل هاى گرم منفى مانند سودموناس و پروتئوس و چپند نوع كوكوس) . فاسد شدن توسط پوینک نيز امكان پذير است .

اغذيه هاى هايدور كاربنى بوسيله مخمر ها و هوينک ها فاسد ميشود ـ انواعى استريتو كو كوس لو كونوستوك و ميكروكوكوس ساكارولى تيك هستند .
شحميات تجزيه هيدرولى تيك پيدا كرده و اسيد هاى شحمى بد بو و تُرش را توليد ميكنند . عده
معدودى از ميكروبها قادر به تجزيه شحميات هستند (پند نوع پوپنک و باكترياى ها ميله ای شكل و كو كوسها).

ميكروب شناسى خاك ، آب ، هوا و غذا

 تقسيم ميكنند . PH اغذيه اسيدى كمتر, 4,5 است كه شامل اكثر ميوه ها ميباشد . اغلب سبزيها ، ماهى ، انواع گوشت ها ، محصولات شيرى غير اسيدى هستند .

خاصيت اسيدى غذا ها براى جلو يريى از رشد و فعاليت اكثر باكتريا هاى فاسد كننده كافى است ولى مخمر ها و يوينى بخوبى در اين PH رشد ميكنند . اغذيه غير اسيدى در در معرض حمله باكتريائى قرار دارند ولى رشد هوينك ها را تحت شرايط مناسب فراهم ميسازند .
اغذيه معمولاً رطوبت كمتر از זّا-• ا\% دارد و رشد ميكروبها را تامين نميكند . يوينك بها آب آزاد كمتر و

 برای متوقف كردن رشد يوينى لازم است ولى تراكم. .ه در صد قند رشد باكتريا ها و اغلب مخمر ها را متوقف ميسازد و نمك كمتر بوسيله انواع ميكروبها فاسد ميشود . تاثير شرايط ذخيره در فاسد شدن غذا ها :
وجود يا عدم وجود اكسيجن در محيط نوع ميكروبها و ونع فاسد شدن را مشخص ميكند . در مجاورت
هوا يوينك ها ، باكتريا هاى هوازى مانند باسيلوس و سودوموناس رشد كرده و غالباً فساد سطحى غذا رخ ميدهد . فاسد شدن ناشى از كلاستريديوم فقط در شرايط بدون هوا رخ ميدهل . غذاى يخحهال كَذاشته شده بوسيله يوينك ها كَرم منفى و چند نوع ميكروكوسها ميباشند . بايد بخاطر داشت كه درجه حرارت پائين فاسد شدن غذائى را بتاخير مياندازد ولى از تكثير آنها جلوگيرى نميكند مكَر آنكه درجه حرارت به V درجه برسد . مواد غذائى كه در -
 مواد غذائى كه در انبار هاى كرم نگحمدارى ميشود بوسيله باكتريا ها ها حرارت دوست كه اغلب آنيا آنها اسيورزا هستند فاسد ميشود و از اين رو در فرايند كنسرو سازى در برابر استريليزاسيون مقاومت ميكنند . فاسد شدن محصولات غذائى نباتى :

فاسد شدن محصولات نباتى بوسيله اسيديته و تركيب كيمياوى مشخص ميشود زيرا همه اين محصولات

ميوه ها و همحِنين بادنجان رومى فوق العاده اسيدى بوده و حدود • 9\% مواد عضوى آنها هايدروواربن مخصوصاً قند است بنابرين فاسد شدن بوسيله يوينى ها و مخمر ها رخ ميدهد . ميوه ها بعد از چند روز قرار

ميكروب شناسى خاك ، آب ، هوا و غذا
فصل ششم گرفتن در حرارت اطاق يا حتى يخچچال آلوده ميشوند و بيشتر پوپنک ميزند ولى گاهى ممكن است تخمير الكلى در آنما صورت گيرد و گاز توليد شود . اغلب سبز يهها معمولاً كاربوهايدريت كمتر ولى پروتين بيشتر از ميوه ها دارند ـ سبزيها غنى از كاربوهايدريت مانند جوارى و كپالو داراى نشايسته اند كه بوسيله عدهُ هعدودى از انواع ميكروبها تجزيه پذير اند . وجود پروتين زياد (بيش از • ヶ٪ مواد عضوى) و نبودن شرايط اسيدى سبب فاسد شدن سبزيربا بوسيله باكتريا ها ميشود . مخمر ها به ندرت باعث فاسد شدن غذا ميشوند باكتريا هاى هوازی و پوپنک ها تحت شرايط هوازى و رطوبت كافى سبزيها ,ا فاسد ميكنند ولى اين فاسلى با بوى بد همراه نيست . باكتريا هاى غير هوازى نشايسته و پروتين ها را در شرايط غير هوازى مورد حمله قرار داده و تعفن ايجاد مينمايند .

فاسد شدن محصو لات حيوانى :

محصولات حيوانى مانند انواعى گوشت و تخهم مرغ تقريباً فاقد كاربوهايدريت بوده و مواد پروتينى آنها هץ تا هQ \% و بقيه شحم است . بنابرين بوسيله باكتريا ها پروتئولى تيك و پوپنک ها فاسد ميشود. نوع و دامنة فاسد شدن به شرايط محيط بستگی دارد . گوشت :
هنگَاميكه گَوشت در داخلى يخخپال قرار گَيرد يا سطح آن خشك شود فاسد شدن آن كُند است زيرا آلودگى ميكروبى اوليه سطحى بوده و انساج داخلى معمولاً سترون است . باكتريا هاى كه به تدريج وارد گوشت ميشوند يا از راه بريدگى وارد انساج داخلى ميشوند تعفن پديد ميآورند . تجزيه تعفنى در گوشت چرخ كرده سريعتر انجام ميگِيرد زيرا ميكروبهاى سطحى كاملاً با همه گوشت مخلوط ميگردد و تعداد باكتريا ها به صد ها ميليون در هر گرم (در عرض چند روز) حتى دريخخپال ميرسد و فاسد كردن شروع ميشود . باكتريا هاى روى فلس ماهى به سرعت رشد و تكثير مينمايند و در ماهى كه +r-+ د درجه انبار شده در

مدت چند روز به صد ها ميليون ميكروب در هر گرم ميرسد . حرارت شير تازه دوشيده شده مناسب رشد و تكثير انواع ميكروبها مخصوصاً ميكروبها خود شير است و اگر
 گذارى سريع آن تكثير باكتريا ها را به مدت r-ا روز متوقف كرده و چند روز از اين عمل جلوگيرى ميكند.

ميكروب شناسى خاك ، آب ، هوا و غذا

روش هاى نكهدارى مواد غذائىي :

در روشهاى نگَهدارى مواد غذائى از راه هاى قديمى مانند خشى كردن تا كاربرد اشعه كاما استفاده ميشود . پنج روش كلى برای نگگهدارى مواد غذائى وجود دارد : ا. كنترول رطوبت r. استفاده از مواد كيمياوى نگَمدارنده س. نگگهدارى در درجه حرارت پائين بأ. ه. تحت تاثير اشعه قرار دادن .

هريكى از روشها براى محصولاتى خاصى مناسب است .
بكار بردن روش سترونى در نگچهدارى مواد غذائى حايز اهميت ميباشد بعبارت ديگر از آلودگى محصولات
بايد در هر لخطه اى از زمان (توليد ، زمان كشتار ، فروش و نگَهدارى در منازل يا رستوانها) جلوگَيرى نمود .
مواد نگَهِدارنده :
مواد كيمياوى گوناكون از جمله فرمآلدئيد ، اسيدبوريى ، اسيد بنزوئيك و سلفر داى اكسايد در كَشته براى
جلوگيرى از فاسد شدن غذا ها و محصولات مختلف از جمله شير بكار رفته است . بسيارى از اين قبيل مواد كيمياوى زيان آور اند و امروز مصرف آنها محدود يا متوقف شده است . گوشت ماهى را با نمكى زدن نگگددارى ميكنند

اسيد هاى عضوى مانع فاسد شدن و تعفن ميشوند . اين اسيد ها را يا مستقيماً به محصولات اضافه ميكنند
(سر كه) و يا در جريان تخمير قند فر آورده حاصل ميگردد . براى نگگهدارى گوشت پرندگان از برخى انتى بيوتيى ها مجاز استفاده ميشود . اين انتى بيوتيك ها در جريان پختن غذا از بين ميرود زيرا برخى افراد نسبت به آنها

حساسيت نشان ميدهند و بعلاوه در بدن بر روى ميكروفلور طبيعى اثر كرده و مقاومت را بوجود ميآورند .
اشعه افشانى :
موفقيت روش قديمى خشك كردن اغذيه در مجاورت نور خورشيد كه براى نگگهدارى غذا ها بكار ميرفته بعلت وجود اشعه ماوراى بنغش است . كاربرد اشعه ماوراى بنفش بطور تجارتى موفقيت محدودى داشته است . اين اشعه توسط مواد و حتى شيشه جذب ميشود و فقط سطح مواد غذائى را سترون' ميكند .

امراض ای كه بوسيله آب و مواد غذائى منتقل ميشوند :

بيماريهاى كه عامل مولد آنها از طريق مواد فاضله طرح ميشود وارد آب و مواد غذائى شده حتى درآنها تكثير پيدا ميكنند و نظر به اينكه تنها راه ورود اين نوع ميكروبها دهن است لذا ييدايش و شيوع بيماريهاى روده اى در نتيجه عدم رعايت اصول صحى عمومى و فردى پديد ميآيند . اين قبيل بيماريها عبارتند از تب تيفوئيد ، گاستروانتريت ، انواع سمال باسيلى ، اسمال خونى آميبى ، برسلوز ، مسموميت غذائى و عفونت هاى ويروسى از . جمله پوليوميليت ميباشد

تب تيفوئيد :
بدنبال آلودگى دهن با سالمونلاتيفى ، باكتريا ها از راه غدد لمفاوى حلق (لوزه ها) يا روده وارد رگّهاى خونى ميشوند و از آنجا بوسيله سلولهاى سيستم رتيكوآندتليال (كبد ، طحال ، عقده هاى لمفاوى روده ، مغز استخوان) برده ميشودند . باكتريا ها بخصوص درطحال و كبد تكثير يافته و بعد از \& أ•ا روز دوباره به خون ميريزند . اين زمان هصادف با پايان دوره كمون و ظهور علايمم بيمارى است . آزاد شدن آندوتوكسين ها موجب بروز تب و علايمه ديگَر مانند سر درد ، كم اشتحائى ، ضعف ، اسمال و لكه هاى قرمز روى شكم ميشود . بيمارى

گَاستروانتريت :

از خوردن غذاى آلوده به سالمونلا گاهى كاستروانتريت پديد ميآيد و علايم آن بعد از تكثير ميكروب و
افزايش تعداد آن ظاهر ميگَردد . دوره مخفى ^^^^ ساعت بوده علايم آن شامل تهوع ، استفراغ حاد ، اسمهال ، بى اشتهائى و افزايش مختصر درجه حرارت بدن است . بهبودى معمولاً در عرض چند روز حاصل ميشود . گاهى سبتى تو كسين شديد رخ ميدهد . اين مريضى در كودكان شديدتر از بالغين ديده ميشود . ميزان مرگ و مير كمتر از يك فيصد است .

گاستروآنتريت يی عفونت ناشى از غذا يا آلودگى غذائى است ، گرپه از روى شدت و شروع ناگچانى آنرا اشتباهاً مسموميت غذائى مينامند . اصطلاح مسموميت غذائى بايد براى مسموميت هاى ناشى از استافيلوكوى طلائى و بوتوليسم بكار برده شود . اسهال باسيلى :
اسهال بيمارى عفونى حاد بخش تحتانى روده كوپک و كولون است . دوره́ كمون بدنبال خوردن انواع
شيگلا معمولاً ^ץ ساعت است و بيمارى بطور ناگَهانى با تب ، شكم درد ، استفراغ و اسهال شروع ميشود ـ اغلباً

ميكروب شناسى خاك ، آب ، هوا و غذا فصل ششم مخاط روده التمهاب پيدا كرده و زخمى ميشود و مدفوع آبگين غالباً واجد خون و بغلم است و بى اشتهائى و ضعف بيشتر به علت از دست رفتن آب و مايعات در اثر اسهال پديد ميآيد . ميزان مرگ و مير ناشى از اسهال خونى باسيلى بر حسب نوع باكتريا و مردم آلوده شده متفاوت است . گاهى اين ميزان تا •r٪ ميرسل • بعضى موارد خفيفت بوده و اسهال باسيلى در نظر گرفته نميشود. كليفر مها :

كليفرمها شامل اشر يشيا كلى و چند نوع باكتريا ديگر است كه از نظر شكل و فيزيولوزى شبيه هستند . اين باكتريا از لحاظ چند صفت با هم اختلاف دارند . باكتريا هاى كليفرم معمولاً در روده انسان و حيوانات بسر ميبرند . اشريشيا كلى معمولاً در محيط بيرون بسر نميبرد ، مگر آنكه در محيط آلوده با مواد فاضله انسان و حيوانات رخ داده باشد . كلبسيلا در طبيعت انتشار وسيع دارد و در خاك ، آب ، روى دانه هاى و در وردءٔ انسان و حيوانات بسر ميبرد . كليفرمها باكتريا هاى ميله ای شكل كوتاه گرام منفى هستند كه از تخمير لاكتوز اسيد و گاز توليد ميكنند . كليفرمها باكتريا غير هوازى اختيارى بوده و در حرارت بين • و بر روى محيط هاى كشت معمولى مانند شوروا و اگاگر ' (Agar agar) غذائى رشد مينمايند . اشريشيا كلى را ميتوان از روى كالونى ها ، بر روى محيط هاى افتراقى از كلبسيلا نومونيا متمايز ساخت . اسـههال آميبى :
عامل مسبب ديسانترى انتاموهيستوليتيكا است كه از طريق خوردن غذا و آب آلوده به مدفوع كيست ميشود. معمولاً وجود آن در كولون علامتى ايجاد نميكند ولى افرادى كه اين آميب در سيستم هضمى شان هست گاهى دچار شكم درد همراه با اسمال ميشوند كه حاوى بلغهم خونى (Bloody mucous) ميباشد . اين علایم ديسانترى از تهاجم آميب به سطح مخاط روده و ايجاد زخهم در آن ميشود ـ گاهى آميب بوسيله خون به جگر حمله ور شده و در آنجا ايجاد آبسه هاى تهديد كننده را باعث ميشود. دواى موثر بهر آلودگى هاى روده ای بيدوكينول و در آبسه جگَرى مترونيدازول ميباشد .

ميكروب شناسى خاى ، آب ، هوا و غذا

تب مالت در انسان بيمارى تب دار ، مزمن با ميزان مرگ و مير پائين است ـ اين بيمارى بسيار ناتوان كننده
بوده و توانائى فرد را كاهش ميدهل. سه نوع بروسلاآبورتوس (Brucella abortus) ، بروسلا سوئيس و بروساملى تنسيس مولد اين بيمارى هستند.

باكتريا بروسلا به انسان از راه خوردن شير كاو يا بز آلوده و يا تماس به مواد غذائى آلوده انتقال پيدا ميكند . بروسلوز بيمارى شايع بين دهقانان ، كار كنان كشتار كاه ها و ويترنران ميباشد ـ دوره كمون از يك هفته تا علايمم شامل ضعف ، لرزه ، سردرد ، كمر درد ، بيخوابى ، درد مفصل است . مريض ممكن است تحريی پذير و عصبى گُشته دچار دپرسيون شود . در برخى از مريضان تب در روز تا 40-38,3 درجه بالا ميرود و در بعضى ديگَر درجه حرارت بدن بطور متناوب رزوانه به حد اكثر خود ميرسد . حالت غير طبيعى بروسلوز كه سختى عضلات ، اختلالات هضمى و علايم عصبى پيش ميآيد . ب-ا سال طول ميكشد . دوره بروسلوز حاد ب-1 ماه است ولى بر گشت مريضى ديده شده است . ميزان مرگ و مير ז- (٪ است . انتى كر צ-r هغته بعد از برزو علايهر پيدا ميشود و با آزمايش ثبوت مكمل تشخيص داده ميشود . تداوى با تتراسيكلين و استريتومايسن صورت ميگيرد و اين دو دارو با هم غالباً موثر واقع ميشود . تداوى بايد ب-Y هفته
 مسموميت غذائى :
دو عامل اصلى و مهمم مسموميت غذائى عبارتست از : . ا. آنترتوكسين حاصل از بعضى انواعى استافيلو كوكها r. اگزوتو كيسن كلاستريديوم بوتولينهم

در هر دو حالت مسموميت از خوردن غذائى كه در اثر آلوده شدن با باكتريا هاى فوق تحت شرايط مساعد از نظر درجه حرارت ، PH ، هوا و مدت عوامل ديگر محتواى تو كسين گشته است یديد ميآيد . هر دو نوع تو كسين در برابر انزايمهاى پروتئولى تيى نسبتاً مقاوم ميباشند و اين صفت جذب آنها را از لوله هضمى امكان پذير ميسازد . مسموميت غذائى استافيلوكوكى :
دوره كمون مسموميت بدنبال خوردن غذاى آلوده به تو كسين זّ-ا ساعت است و علايهم بطور ناگمانى بروز كرده و شامل تهوع ، استفراغ ، اسمهال و كاهى ضعف و بيحالى مفرط ميباشد . تب ممكن است وجود نداشته

ميكروب شناسى خاى ، آب ، هوا و غذا فصل ششم

انتشار وسيع استافيلوكو كها بر روى پوست و غشا هاى مخاطى بدن انسان در افراد سالم و افرادى كه مبتلا به بيماريهاى تنفسى هستند ديده شده است ـ چند سلول از اين ميكروبها براى توليد انتروتو كسين كافى است و اگر غذاى آلوده شده مدت جند ساعت خارج از يخخال بماند فرصت مناسب براى توليد تو كسين وجود دارد . اغذيه كه بيشتر آلودگى پيدا ميكنند عبارتند از سالاد ها ، انواع شيرينى ها واجد خامه و كحالو ، كنسرو و گوشت يا ماهى ، انتروتو كسين استافيلوكوك از لحاظ مقاومت به حرارت را دارند. ـ حد اقل چهار نوع انتروتو كسين متمايز ايمونولوزى جدا كرده اند كه همگى وزن ماليكولى پائين داشته و پروتين هاى بازى هستند ، بشدت انتى

وايروسهاى روده ای :

بيش از •ه نوع وايروس از روده انسان جدا گرديده و معلوم گَشته كه بعضى از آنها بوسيله آب ، شير ، و مواد غذائى انتقال پيدا ميكنند . بسيارى از آنها بخصوص در كودكان بيماريهاى روده اى ايجاد ميكنند و عده اى نيز علايم ديگرى پديد ميآورند . خاصيت بيماريزائى بسيارى از وايروسها هاى روده اى هنوز به اثبات نرسيده ولى در كشت همگى اثرات سيتوياتيكَّ

$$
\begin{aligned}
& \text { : جدا شدن حاصل بصورت امونياك از امينواسيد : Ammoni fication ' } \\
& \text { : تخريب انساج در اثر رشد و تكثر ويروس ها : Cytopathic }{ }^{\text {ر }} \text { 「 }
\end{aligned}
$$

فهر ست مآخذ :

 ra
 انتشارات دانشكاه اصفحان ، ص 1 د 1 .

 .eq gre crvar. r. ar

-ا- حسن يار ، سيد اميرشاه ، (هצז|): نباتات عمومى جلد اول . چاپ اول ، مطبعه هما .كابل. ص ص
، عז، .
 \qquad -11 ص.
 . T91 g TVE , TAY ، THE ، TH • , TIV
 . IVV g IVF

تهران. ص ص ،
Y \&
.91)

91
 . M19gar

افغانى ، ص ص ، r، r ، r r و IFV.
 .rVA give.
 . \vee و 9

مولوى بلخى (دح)، ص ص ، هMا و اءז .

 . ITK
 . 1... gr . . Dq ، DF • ص

ص ، ، ه ، ه9 ، ،
-r. .
 فردوسى ، ص ^זا .

 .v9

 \qquad ع
، rir ، צז .r.

، גזו ، ، و و و lar .
 . 101 g AT . YA
I. ADRIANN C.DLAAT. , (1997): Microbiology, sec ,Ed LEA8 Febiger , Philadelphia, pp: 128,140.
II. ALTMANNK , (1983): Achromato graphic Method for the purification of k 99 pili from Entertoxigence coli, Jour of gen , Mecrob 129 , pp: 19 , 82 .
III. BAYLESS C.E,ET , AL,(1989) : Resistance and structure of spores of B.Subtilis , the Jour, of Appl, Bact 50, 379, 390.
IV. BERNAERD. DAVIS (1998) : Microbiology . J.B.Lippincott company Philadelphia, pp : 41
V. BURTON S. GUTTMAN, JONS W. HO. PKINS (1999) : Biology , Washington university.
VI. CAMPBELL, ANEIL - LAWRENCE . G. MITCHELL (1999): Biology, New york , pp 128, 129 .
VII. ELDON D. ENGER AND FREDERICK C. ROSS (2000): Concepts in Biology, Delta collage, McGraw - Hill Companies , pp: 440,441
VIII. GILLESPIE SH AND BRON FORD KB (2000) : Mecdical Microbiology and infection at a glance . pp:180,205
IX. GOTT FRIED S. SANDRA (1998): Biology Today Mosby London , p 268.
X. INGRHAM L. JOHN . ETAL (1999): Microbiology . wadsworth puplishius compony pp,124, 140 .
XI. JOHRI RM AND LATAS (2004) : Texbook of Microbiology .
XII. ADRIANN C. DLAAT. (2000): Tood PK, Probiotic Bacteria , Today and Tomorrow , pp: 72,91
XIII. PRESCOTT , MLASING ETAL (2005): Microbiology Wm.c browh publishers, p 122 .
XIV. PRESCOTT M LAV SING ET AL . (2002) . Microbiology . New york , p 34.
XV. RAY MOND T, AND JOHN SON G , (2005): Molecular Microbiology, pp:145,160.
XVI. RONALD. M.ATLAS (1986) : Microbiology, Macmillan, Publishing, Company, University of Louisville, New york. pp: 321 .

[^23]Book Name \quad Microbiology
Author

Publisher	Herat Medical Faculty
Website	www.hu.edu.af
Number	1000
Published	2012
Download	www.ecampus-afghanistan.org
This Publication was financed by the German Academic Exchange Service (DAAD)	
with funds from the German Federal Foreign Office.	
Administrative and Technical support by Afghanic organization.	
The contents and textual structure of this book have been developed by concerning	
author and relevant faculty and being responsible for it.	
Funding and supporting agencies are not holding any responsibilities.	

If you want to publish your text books please contact us:
Dr. Yahya Wardak, Ministry of Higher Education, Kabul
Office: 0756014640
Email: wardak@afghanic.org

All rights are reserved with the author.

ISBN: 9789936200876

Message from the Ministry of Higher Education

In the history, book has played a very important role in gaining knowledge and science and it is the fundamental unit of educational curriculum which can also play an effective role in improving the quality of Higher Education. Therefore, keeping in mind the needs of the society and based on educational standards,new learning materials and textbooks should be published for the students.

I appreciate the efforts of the lecturers of Higher Education Institutions and I am very thankful to them who have worked for many years and have written or translated textbooks.

I also warmly welcome more lecturers to prepare textbooks in their respective fields. So, that they should be published and distributed among the students to take full advantage of them.

The Ministry of Higher Education has the responsibility to make available new and updated learning materials in order to better educate our students.

At the end, I am very grateful to the German Federal Foreign Office, the German Academic Exchange Service (DAAD) and all those institutions and people who have provided opportunities for publishing medical textbooks.

I am hopeful that this project should be continued and publish textbooks in other subjects too.

Sincerely,
Prof. Dr. Obaidullah Obaid
Minister of Higher Education
Kabul, 2012

Publishing of textbooks \& support of medical colleges in Afghanistan

Honorable lecturers and dear students,

The lack of quality text books in the universities of Afghanistan is a serious issue, which is repeatedly challenging the students and teachers alike. To tackle this issue we have initiated the process of providing textbooks to the students of medicine. In the past two years we have successfully published and delivered copies of 60 different books to the medical colleges across the country.

The Afghan National Higher Education Strategy (2010-1014) states:
"Funds will be made ensured to encourage the writing and publication of text books in Dari and Pashto, especially in priority areas, to improve the quality of teaching and learning and give students access to state-of- the-art information. In the meantime, translation of English language textbooks and journals into Dari and Pashto is a major challenge for curriculum reform. Without this, it would not be possible for university students and faculty to acquire updated and accurate knowledge"

The medical colleges' students and lecturers in Afghanistan are facing multiple challenges. The out-dated method of lecture and no accessibility to update and new teaching materials are main problems. The students use low quality and cheap study materials (copied notes \& papers), hence the Afghan students are deprived of modern knowledge and developments in their respective subjects. It is vital to compose and print the books that have been written by lecturers. Taking the critical situation of this war torn country into consideration, we need desperately capable and professional medical experts. Those, who can contribute in improving standard of medical education and public health throughout Afghanistan, thus enough attention, should be given to the medical colleges.

For this reason, we have published 60 different medical textbooks from Nangarhar, Khost, Kandahar, Herat, Balkh \& Kabul medical colleges. Currently we are working on to publish 60 more different medical textbooks, a sample of which is in your hand. It is to mention that all these books have been distributed among the medical colleges of the country free of cost.

As requested by the Ministry of Higher Education, the Afghan universities, lecturers \& students they want to extend this project to non-medical subjects like (Science, Engineering, Agriculture, Economics \& Literature) and it is reminded that we publish textbooks for different colleges of the country who are in need.

As stated that publishing medical textbooks is part of our program, we would like to focus on some other activities as following:

1.Publishing Medical Textbooks

This book in your hand is a sample of printed textbook. We would like to continue this project and to end the method of manual notes and papers. Based on the request of Higher Education Institutions, there is need to publish about 100 different textbooks each year.

2. Interactive and Multimedia Teaching

In the beginning of 2010, we were able to allocate multimedia projectors in the medical colleges of Balkh, Herat, Nangarhar, Khost \& Kandahar. To improve learning environment the classrooms, conference rooms \& laboratories should also be equipped with multimedia projectors.

3.Situational Analysis and Needs Assessment

A comprehensive need assessment and situation analysis is needed of the colleges to find out and evaluate the problems and future challenges. This would facilitate making a better academic environment and it would be a useful guide for administration and other developing projects.

4.College Libraries

New updated and standard textbooks in English language, journals and related materials for all important subjects based on international standards should be made available in the libraries of the colleges.

5.Laboratories

Each medical college should have well-equipped, well managed and fully functional laboratories for different fields.

6.Teaching Hospitals (University Hospitals)

Each medical college should have its own teaching hospital (University Hospital) or opportunities should be provided for medical students in other hospitals for practical sessions.

7.Strategic Plan

It would be very nice if each medical college has its own strategic plan according to the strategic plan of their related universities.

I would like to ask all the lecturers to write new textbooks, translate or revise their lecture notes or written books and share them with us to be published. We assure them quality composition, printing and free of cost distribution to the medical colleges.

I would like the students to encourage and assist their lecturers in this regard. We welcome any recommendations and suggestions for improvement.

We are very thankful to the German Federal Foreign Office \& German Academic Exchange Service (DAAD) for providing funds for 90 different medical textbooks and the printing process for 50 of them are ongoing. I am also thankful to Dr. Salmaj Turial from J. Gutenberg University Mainz/Germany, Dieter Hampel member of Afghanic/Germany and Afghanic organization for their support in administrative \& technical affairs.

I am especially grateful to GIZ (German Society for International Cooperation) and CIM (Centre for International Migration \& Development) for providing working opportunities for me during the past two years in Afghanistan.

In Afghanistan, I would like cordially to thank His Excellency the Minister of Higher Education, Prof. Dr. Obaidullah Obaid, Academic Deputy Minister Prof. Mohammad Osman Babury and Deputy Minister for Administrative \& Financial Affairs Associate Prof. Dr. Gul Hassan Walizai, the universities' chancellors and deans of the medical colleges for their cooperation and support for this project. I am also thankful to all those lecturers that encouraged us and gave all these books to be published.

At the end I appreciate the efforts of my colleagues Dr. M. Yousuf Mubarak, Abdul Munir Rahmanzai, Ahmad Fahim Habibi, Subhanullah and Hematullah in publishing books.

Dr Yahya Wardak
CIM-Expert at the Ministry of Higher Education, November, 2012
Karte 4, Kabul, Afghanistan
Office:0756014640
Email: textbooks@afghanic.org
wardak@afghanic.org

Abstract

Microbiology is one of the compilation books which include acknowledgements, table of contents, preface, and content. The thesis has six chapters which the first chapter is dealing with history of microbiology, microscope and its types, study of bacteria by microscope and the ways bacteria are changing. Chapter two is about bacteria specifications, bacteria morphology, structure of bacteria, dynamic members and dynamic cell methods in bacteria, septum of bacteria, reproduction, feeding and bacteria metabolism, bacteria breathing, (aerobic \& anaerobic) and chemical structure of bacteria. In chapter three bacteria's classifications and naming, an introduction to significance of bacteria, viruses, virus diseases and body defending against viruses, virus classification, virus and HIV proliferation as also been discussed. Chapter four is dealing with real fungi (Eumycetes) and significance of fungi in human being's life, Molds, and Yeast and their classifications and physiological activities of Yeasts and Molds. Chapter five is dealing with protozoa, protozoa specifications; protozoa morphology, importance and classification of protozoa have also been discussed. And in chapter six topics like soil bacteriology, water, weather and food are added. The topics discussed in this chapter are soil bacteria, soil diseases production bacteria, biochemical cycle, cycle of carbon and nitrogen in nature, analysis of anti-bacteria, and other chemical materials, water bacteria, infiltration of sewerages, bacteria of sugary water, and air disease production bacteria, feeding materials, and ways of keeping feeding materials, food immunity etc.... For the compilation of this chapter we used from 40 reliable sources and several internet websites.

خُلص زند گیينامةٔ پوهاند مـحمد جمعه حنيف

 ليسه ابو منصور علي شكيبان شامل و در سال

 با درجه اعلي از پوهنحَي ساينس پوهنتون كابل فارغ التحصيل شد و در رياست استخدا
 هرات به حيث استاد تعين بست گرديد. با ارتقا مؤسسه عالي تربيه معلم به انستيتوت
 معلمين مسلكي بوده و تا الان هم در اين نهاد مصروف خدمت است. وي همزمان با پيشبرد وظيفه تدريس از قلم دست بر نداشته و تاليف و تحقيق كتبي متعدد خو استن استه تا از اين راه نيز به جامعه علمي و فرهنگي كشور عزيزمان مصدر خدمات ارزنده الـي اي شود .

[^0]: ${ }^{1}$ Micrometer $=10^{-3} \mathrm{~mm}$
 ${ }^{2} \mathrm{Nm}=10^{-3} \mathrm{Mcm}=10^{-6} \mathrm{~mm}$

[^1]: ${ }^{1}$ Resolving power

[^2]: ${ }^{1}$ Phase-Contrast Microscope

[^3]: ${ }^{1}$ Knoll
 ${ }^{2}$ Hruska
 ${ }^{3}$ Freeze-Itching
 ${ }^{4}$ Scanning Electron Microscope

[^4]: ميكويالاسما : عبارت از باكتريا هاى فاقد ديوار سلولى هستند كه نوع باتوجن شان در انسان مايكويالاسمانوونيا است كه عامل ذات الريها ابتدائى ميياشد كه سبب عوارض در سييستمه تنفسى ميشود.

[^5]: ${ }^{1}$ Mycellium ：يك كتله اي هايفا يا تيليس يك قاري

 ${ }^{2}$ Muro peptides ：عبارت از مواد متعلق تروتينى كه باعث سختى جدار ميكردد كه ماليكول ها ، امينواسيد و امينوشوكر تركيب كرديده است اسياى

[^6]: ماده الى كه با تغير رنگ يا به شكل رسوب مانتد آن ها سبب شناخته شدن ماده ديگرى ميشود بطور مثال اسيد ها و قلوى ها ماده ايست كه رنگ Indicator

 با قطرات حربى در شير كه به صورت معلق در آن موجود ميباشد .

[^7]:
 فضاى كوचک در يكى بلور كه از كاز مايع پر شده است ، يا قطعه سنگ قديمى ترى در داخل سنگَ جوانتر ．
 Metaphos ז ．تركيب گرديده است plate

[^8]: : نوعى مايتوسيور كه در سيور: تخم توليد نميگردد ـ در حقيقت قسمت قابل تجربه يك هايف را كويند
 " : Fragmentation ${ }^{r}$

[^9]:

[^10]: Retaetion

 ($\Delta r / r a$)

[^11]: 竍 : Fermentation ميزهند مثلاً محيط قندى انكَور و يا كشمشش تنير يافته به سر كه و يا الكل عوض ميشود .

[^12]: ' كولرا (Vibrio cholarae) : عامل مرض ميباشد منبع مرض انسان هاى مريض بوده كه غذا يا آب آشاميدنى شان ملوث شود ، صفحه تفريح يك الى سه

 ميخانيكيت يك اندازه انرزى ينز مصرف ميشود صورت ميگيرد ، از جدار امعأ مايعات توسط مواد سـل بطرف قنات ميآيند . اين مواد عبارتند از : مواديكه از ميكروب كولرا خارج ميشوند به عين ميخانيكيت وظيفه همب سوديهر را مختل ساخته و مايع را جدار بطرف قنات Jascara - Phenol phtheleyn

 براى اينكه مريضان مصاب كولرا به درستى تداوى شوند ، اول مريض مايعات زياد داده شود و سيس انتى بيوتيك تطبيق گردد.

[^13]: جذام (Leprosy) : عامل مرض عبارت Mycobacterium Lepvae است ، باسيل جذام برايى اينكه تشخيص به مرض مصاب شودو بايد براى يك
 و يا اينكه والدين مريض منشأ ابتداى مريض ميباشند . باسيل جذام از يلاسنتا عبور كرده نميتواند پس اطفال مرض را بعد از تولد از والدين خود ميگَردند دوره تفريح مرض بنّج تا ده سال است .
 هنگاميكه جلد يا غشاى مخاطى به مرض مصاب ميشود افرازات اين دو ناحيه مرض را به ديعران انتقال ميدهد ، باسيل جذام از نواحى جلدى كه تخريش شده
 داخل عضويت ميشوند ، جذام اكثر اعضاى عضويت را مصاب كرده ميتواند ، جذام دو نوع ميباشد : Lepromatous Leprosy -1

[^14]:

 دوباره عوارض به شكل اولى بر ميكَردد و كَاهيه به جهار مرتبه اين باز كَشت تكرار ميشود .

[^15]:

[^16]: ${ }^{1}$ Lytic cycle

[^17]: (محلول بورد و يا (Bardoix mixture) از نيل طوطيا و چجونه آب نارسيده به تاسب توصيه شده تميه و تركيب مينمايند ، و يكى از فنجيهاى سائيده
 , اموتر ميباشد

[^18]: . ساختمانى كه در سطح خارجى آن تعداد مشخص بازيديوسيور (معمولاً جهار) پس از كاريو كامى و ميوز هسته موجود در آن تشكيل ميشود .

[^19]: يكى تعداد سلولهاى كه نوك به نوى به يكديكر حسسييده و تشكيل يك زنجير را ميكنند معمولاً بوسيله بعضى از مخمر ها : Pseudo mycellium

[^20]: ' كالونى : عبارت از يى گروب بزرگ حيوانات بوده كه از نقطه نظر ساختمان و خواص با همديگً, شباهت تام داشته و در يى مدل دسته جمعى زندگى

[^21]: Symbiosis تشكيل شده اند مثال ميوز (همزيستى) ميياشد . World Heath Organizatgation ${ }^{「}$

[^22]:
 يوست آن شيرةٔ با طمع شيرين خارج ميشود كه از آن نوع مشروب الكولى ميسازند .

[^23]: XVII. TAIARO KATHLEEN - TALORO ATHAR (1999). Microbiology .

 Massachusetts university, p 135.
 XVIII. WAKELIN, WILLIAM (1993) : Medicle Microbiology , Mosby , St, Louis, Baltimor Boston.
 XIX. WILLIAM .S. BRADSHAW (1998): Biological science, Brigham young university, D.C. Healt and company , p : 111.
 XX. WWW. microbes.info
 XXI. WWW. microbeworld.org
 XXII. WWW. microbio.uab.edu
 XXIII. WWW.microbiology.unl.edu
 XXIV. WWW.mums.ac.ir/micobiology

